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ABSTRACT
The inter-integrated circuit (I2C) is a multiple-master, multiple-slave, single-ended bus that is typically used
for attaching lower-speed peripheral ICs to processors and microcontrollers. The type of slave devices
range from nonvolatile memory to data-acquisition devices like analog-to-digital converters (ADC),
sensors, and so forth. This application report demonstrates how to use the feature rich I2C master on the
SimpleLink™ MSP432E4 microcontrollers to communicate with a host of slave devices in a system.

Project collateral and source code discussed in this document are available in the SimpleLink™
MSP432E4 Software Development Kit (SDK).

Contents
1 Introduction ................................................................................................................... 2
2 Overview of I2C Protocol .................................................................................................... 2
3 Circuit Schematic for Example Code...................................................................................... 6
4 Basic I2C Controller Initialization ........................................................................................... 7
5 I2C Master Function: Interrupt, µDMA and FIFO Operation .......................................................... 13
6 I2C Glitch Filter Capability ................................................................................................. 17
7 Conclusion .................................................................................................................. 18
8 References .................................................................................................................. 18

List of Figures

1 Open-Drain Circuit........................................................................................................... 2
2 Address Phase ACK ........................................................................................................ 4
3 Address Phase NAK ........................................................................................................ 4
4 Data Frame Write............................................................................................................ 5
5 Data Frame Read............................................................................................................ 6
6 Circuit Schematic ............................................................................................................ 6
7 I2CMSA and Slave Address Representation ............................................................................ 9
8 I2C Transaction for I2C_MASTER_CMD_SINGLE_SEND............................................................ 11
9 I2C Transaction for I2C_MASTER_CMD_BURST_SEND_START .................................................. 11
10 I2C Transaction for I2C_MASTER_CMD_BURST_SEND_CONT ................................................... 11
11 I2C Transaction for I2C_MASTER_CMD_BURST_SEND_FINISH .................................................. 11
12 I2C Transaction for I2C_MASTER_CMD_SINGLE_RECEIVE ....................................................... 12
13 I2C Transaction for I2C_MASTER_CMD_BURST_RECEIVE_START.............................................. 12
14 I2C Transaction for I2C_MASTER_CMD_BURST_RECEIVE_CONT............................................... 12
15 I2C Transaction for I2C_MASTER_CMD_BURST_RECEIVE_FINISH.............................................. 12
16 Transmit With CPU and Non FIFO ...................................................................................... 13
17 Receive With CPU and Non FIFO ....................................................................................... 13
18 Transmit With CPU and FIFO ............................................................................................ 14

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA776
http://www.ti.com/tool/simplelink-msp432e4-sdk
http://www.ti.com/tool/simplelink-msp432e4-sdk


Introduction www.ti.com

2 SLAA776–October 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Using Feature Set of I2C Master on
SimpleLink™ MSP432E4 Microcontrollers

19 Receive With CPU and FIFO ............................................................................................. 14
20 Transmit With µDMA and FIFO .......................................................................................... 15
21 Receive With µDMA and FIFO ........................................................................................... 15
22 Transmit in HS Mode ...................................................................................................... 16
23 Receive in HS Mode ....................................................................................................... 16
24 Glitch Filter vs Baud Rate ................................................................................................. 17

1 Introduction
The SimpleLink MSP432E4 family of devices from Texas Instruments integrates up to 10 independent I2C
modules with the following features:
• I2C module with independent master and slave blocks on the same bus without requiring additional

pins for separate master and slave functions
• Integrated 8-byte-deep FIFO for transmit and receive operations that can be independently assigned to

either master or slave block
• Efficient transfer mechanism using µDMA and FIFO that reduces CPU overhead during large data

transfers
• Independent µDMA channel for Transmit and Receive operations
• Programmable glitch suppression capability in terms of system clocks which meets the standard

requirements
• Support for standard, fast, fast plus, and high-speed modes through configurable timer register
• Support for arbitration and clock stretching during master mode initiated transactions
• Support for SMBus clock low time-out, dual-slave address, and quick command features
• Highly configurable interrupt mechanism to reduce dependency on polling mechanism

2 Overview of I2C Protocol
Before the use of I2C on the MSP432E4 devices is described, it is important that some of the basic
concepts of the I2C protocol and bus are described first. This aids the understanding of the protocol and
the debugging issues on the physical bus using an oscilloscope or a logic analyzer.

The description is kept concise from the understanding perspective. For more information, see the
UM10204: I2C-Bus Specification and User Manual.

2.1 Physical Layer of I2C
The I2C bus consists of two signals: serial clock (SCL) and serial data (SDA). At the I/O level, both SCL
and SDA are open-drain (see Figure 1).

Figure 1. Open-Drain Circuit
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The output transistor drives low to create a logical 0 on the bus. The output transistor is off to float the pin
to create a logical 1 on the bus. Hence, an external pullup to VDD is required. The value of the pullup
resistor depends on the bus capacitance and the sink current as established by the I2C specification. The
open-drain configuration is required because the bus is bidirectional; if one device on the bus transmits a
logical 0 and another device transmits a logical 1, this condition does not create an electrical contention
that could damage the I/O. Instead, a current path is established from the device transmitting a logical 1 to
the device transmitting a logical 0 through the pullup resistor.

The important positive consequence of this are:
• Multiple devices can place a different logical value and not damage the other devices due to excessive

current flow. It also has an effect on the workings of the I2C bus itself.
• When this concept is applied to SCL, it provides the slave a mechanism for stretching the clock and

establishes a form of flow control.
• When this concept is applied to SDA, it allows the master to detect another master, which is called bus

arbitration.

The important negative consequence of this are:
• The rise time of the SCL and SDA are no longer a function of the drive strength but are defined by the

RC time constant, where R is the value of the pullup resistor and C is the value of the parasitic and
load capacitance on the bus. This limits the speed of operation.

• The speed of operation requires that the R value be decreased to reduce the RC time constant as
parasitic and load capacitance cannot be changed readily, thereby, increasing the current through the
R when a logical 0 is applied from a device affecting the current drain on portable power devices.

2.2 Communication Layer of I2C
The I2C bus communicates using the timing of the SCL and SDA; however, there are some concepts that
need to be defined first.
• Bus idle: The idle state of a bus is defined when both SCL and SDA are high.
• START bit: The START bit of a I2C frame is defined as SDA driven low while SCL is high.
• STOP bit: The STOP bit of an I2C frame is defined as SDA pulled high while SCL is high.

All bits are signaled between a start and stop bit. Any bit being transmitted by a device (master or slave) is
SCL being pulled high and then driven low (pulsing) with the SDA kept at a steady state. It is invalid in I2C
for the SDA to change when the SCL is high other than for a START or STOP bit.

Data is always exchanged in a 9-bit format, in which 8 bits are used for data exchange and 1 bit is used
for acknowledging the transmission by the receiver of the data. The receiver can be a master or a slave.

2.2.1 Address Frame
The first part of an I2C frame is called the address frame where the master presents a slave address. The
address frame is comprised of a 7-bit slave address, the 8th bit indicates the direction of transfer and the
9th bit is used to acknowledge the transfer.

When the 8th bit is logical 0, the direction of data is from master to slave and is referred to as master
transmit or write and when it is logical 1, the direction of data is from slave to master and is referred to as
master receive or read.

The 9th bit is called the acknowledge bit (ACK) and is used by the device receiving the data to indicate it
is ready to accept the address. As shown in Figure 2 for the slave address 0x50, which exists on the bus,
the slave device drives the bus logical 0, which indicates to the master that it is ready to move to the data
frame.

http://www.ti.com
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Figure 2. Address Phase ACK

If the slave address does not exist on the bus, then the master reads back a logical 1 (also called NAK)
and terminates the transfer with a STOP bit as shown in Figure 3. In some cases, slave devices use the
ACK bit to indicate its readiness for further transaction.

Figure 3. Address Phase NAK
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2.2.2 Data Frame Write
After the address frame, the next frame to be sent is the data frame (called a write operation) if a logical 0
is sent in the 8th bit of the address frame. The direction of the transfer is from master to slave for the 8
bits of data frame to follow. The 9th bit is the ACK bit for the data frame and the direction of this bit is from
slave to master. If the slave cannot accept the data, it should send a logical 1. The master should stop the
I2C frame and the bus must return to idle state. If the slave accepts the data, it should send a logical 0 and
the master can send the next byte, stop the frame, or change the direction of the bus using repeated start.

Figure 4. Data Frame Write
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2.2.3 Data Frame Read
After the address frame, the next frame to be sent is the data frame (called a read operation) if a logical 1
is sent for the 8th bit in the address frame. The direction of the transfer is from slave to master for the 8
bits of data. The 9th bit is the ACK bit for the data frame and the direction of this bit is from master to
slave. If the master cannot accept the data, it should send a logical 1, the master should issue a STOP
condition on the I2C frame and the bus should return to idle state. If the master accepts the data, it should
send a logical 0 and the master can accept the next byte.

Figure 5. Data Frame Read

3 Circuit Schematic for Example Code
This section discusses the schematic for the slave device (LAPIS semiconductor MR44V064A), which has
been used for development of the code examples. The slave device has been interfaced on header 1 (for
connection of a BoosterPack plug-in module) on the MSP-EXP432E401Y LaunchPad™ development kit.

Figure 6. Circuit Schematic
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4 Basic I2C Controller Initialization

NOTE: The I2C controller initialization examples that have been described will be I2C module
instance I2C2 for the master function. Other I2C instances may be used, but the user must
see the following section to ensure that the other instances are properly initialized.

To use the I2C module on the MSP432E4 family of devices, application peripheral interfaces (APIs) must
be called from the SimpleLink MSP432E SDK to correctly initialize the I2C module.

Two distinct sets of APIs are required before any operation of the I2C controller for the master function is
configured:
• Configuring the IOs for I2C (see Section 4.1)
• Configuring the I2C controller (master function) (see Section 4.2)

When the initialization has been completed, only the I2C API can be called to perform data transfers from
the master function for which the following operations are important:
• Addressing a slave from the I2C master for transmit or receive operations (see Section 4.3)
• Applying the correct command to the I2C master for transmit or receive operations (see Section 4.4)

4.1 Configuration of IOs
The first step of configuration is to enable and configure the GPIOs corresponding to the SCL and SDA of
the I2C module. The master and slave I2C modules are configured in the same manner. All I2C instances
use the same API for configuration, except for the parameters passed to the API, which are instance
specific.

Code Flow:
• Enable the clock to the corresponding GPIO module using MAP_SysCtlPeripheralEnable and wait for

the peripheral ready using MAP_SysCtlPeripheralReady.
• Call the MAP_GPIOPinConfigure API to configure the SCL and SDA port mux for the specific GPIO

port and pin.
• Call the MAP_GPIOPinTypeI2C API to configure the SDA in open-drain mode, digital enable, and

alternate function select in the GPIO port for corresponding SDA pin.
• Call the MAP_GPIOPinTypeI2CSCL API to configure the SCL for digital enable and alternate function

select in the GPIO port for the corresponding SCL pin. The open-drain behavior is controlled by the I2C
controller; hence, it must not be set in the GPIO Open Drain Select (GPIOODR) register.

/* Enable GPIO for Configuring the I2C Interface Pins */
MAP_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOL);

/* Wait for the Peripheral to be ready for programming */
while(!MAP_SysCtlPeripheralReady(SYSCTL_PERIPH_GPIOL));

/* Configure Pins for I2C2 Master Interface */
MAP_GPIOPinConfigure(GPIO_PL1_I2C2SCL);
MAP_GPIOPinConfigure(GPIO_PL0_I2C2SDA);
MAP_GPIOPinTypeI2C(GPIO_PORTL_BASE, GPIO_PIN_0);
MAP_GPIOPinTypeI2CSCL(GPIO_PORTL_BASE, GPIO_PIN_1);

http://www.ti.com
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4.2 Configuring the I2C Controller (Master Function)
The next step is configuring the I2C controller master function. Some examples of the I2C controller may
use a polling mechanism, but this application report emphasizes the use of interrupts instead of polling.

Code Flow:
On MSP432E4 devices, there is no System Control API to report the clock frequency.
1. Use the MAP_SysCtlClockFreqSet API, or hard code a variable with the value of 16 MHz, because the

default clock after power up is a 16-MHz precision oscillator (PIOSC). The clock frequency is required
by the I2C API to compute the divider to generate the final I2C SCL clock frequency for different modes
of operation.

/* Setup System Clock for 120MHz */
getSystemClock = MAP_SysCtlClockFreqSet((SYSCTL_OSC_MAIN | SYSCTL_USE_PLL |

SYSCTL_XTAL_25MHZ | SYSCTL_CFG_VCO_480),
120000000);

2. Disable the clock, reset the I2C master module and then enable the clock to the I2C master module
using the MAP_SysCtlPeripheralDisable, MAP_SysCtlPeripheralReset and
MAP_SysCtlPeripheralEnable APIs. Then, wait for the peripheral ready using
MAP_SysCtlPeripheralReady. This step is required to ensure that any stale state of the bus or the
master function (due to a previous run) is removed.

/* Stop the Clock, Reset and Enable I2C Module in Master Function */
MAP_SysCtlPeripheralDisable(SYSCTL_PERIPH_I2C2);
MAP_SysCtlPeripheralReset(SYSCTL_PERIPH_I2C2);
MAP_SysCtlPeripheralEnable(SYSCTL_PERIPH_I2C2);

/* Wait for the Peripheral to be ready for programming */
while(!MAP_SysCtlPeripheralReady(SYSCTL_PERIPH_I2C2));

3. Call the MAP_I2CMasterInitExpClk API to configure the I2C master function for the correct SCL clock
frequency. The API uses the I2C base address as the first parameter, the system clock as the second
parameter and, based on true or false in the last parameter, configures the SCL clock frequency for
100 kHz or 400 kHz. If the system clock is high enough to support high-speed mode, it will configure
the high-speed dividers as well.

/* Initialize and Configure the Master Module */
MAP_I2CMasterInitExpClk(I2C2_BASE, ui32SysClock, false);

4. Enable the interrupt sources by setting the corresponding bits in the I2C master function Interrupt Mask
Register. Use the MAP_I2CMasterIntEnableEx API, whose first parameter is the I2C base address and
then the interrupt bits.

/* Enable Interrupts for Arbitration Lost, Stop, NAK, Clock Low Timeout
* and Data. */

MAP_I2CMasterIntEnableEx(I2C2_BASE, (I2C_MASTER_INT_ARB_LOST |
I2C_MASTER_INT_STOP | I2C_MASTER_INT_NACK |
I2C_MASTER_INT_TIMEOUT | I2C_MASTER_INT_DATA));

5. Enable the interrupt line from the I2C master function to the NVIC using the MAP_IntEnable API.
/* Enable the Interrupt in the NVIC from I2C Master */

MAP_IntEnable(INT_I2C2);

4.3 Addressing an I2C Slave in MSP432E4
The I2C master function uses the MAP_I2CMasterSlaveAddressSet API to set the address of the slave
device. The first parameter is the I2C base address for the master function, the second parameter is the
external slave address (which is explained in detail using the example below) and the third parameter is
the direction of transfer. The third parameter is set to “true” for a read operation or “false” for a write
operation. In the following example, a call of the function is shown to access a slave device with the slave
address as 0x50. Use Figure 7 to calculate the value.
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/* Define for I2C Slave Module */
#define SLAVE_ADDRESS_EXT 0x50
#define NUM_OF_I2CBYTES 255

/* Send the Slave Address with RnW as Transmit and First Data
* Byte. Based on Number of bytes the command would be either
* START or FINISH */

MAP_I2CMasterSlaveAddrSet(I2C2_BASE, SLAVE_ADDRESS_EXT, false);
MAP_I2CMasterDataPut(I2C2_BASE, setMasterTxData[setMasterBytes++]);
if(setMasterBytes == setMasterBytesLength)
{

MAP_I2CMasterControl(I2C2_BASE, I2C_MASTER_CMD_SINGLE_SEND);
}
else
{

MAP_I2CMasterControl(I2C2_BASE, I2C_MASTER_CMD_BURST_SEND_START);
}

}

The top part of Figure 7 shows the address phase as expected by the external slave device for which it
would ACK the address phase, and the bottom part shows the I2C Master Slave Address (I2CMSA)
register information from the MSP432E4 SimpleLink™ Microcontrollers Technical Reference Manual. The
bits shown as A2, A1, and A0 are based on the tie off done for the slave device pins, which are connected
to GND. Therefore, the binary address as expected by the slave device is 1010000. This sequence in
hexadecimal format is 0x50.

In the MSP432E4 I2CMSA register, the address bits appear in bit position 7 to 1. The
I2CMasterSlaveAddressSet API shifts the slave address to the correct position in the register.

Figure 7. I2CMSA and Slave Address Representation
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4.4 Data Transfer Commands for I2C Master in MSP432E4
The I2C master has two modes of operation. In the first mode of operation the CPU or DMA can use the
I2C Master Data (I2CMDR) register to write data to a slave or read data from a slave using a single byte
buffer. While the absolute address of the I2CMDR register is programmed in the control structure of
µDMA, for the CPU to access the data register there are two APIs that are available.
• MAP_I2CDataPut is used to write data to a slave during a transmit operation. The first parameter is the

I2C base address, and the second parameter is the data that must be transmitted
• MAP_I2CDataGet is used to read data from a slave during a receive operation. The first parameter is

the I2C base address, and the function returns the data read from the I2CMDR register.

The example codes of i2c_master_cpu_nonfifo (see Section 5.1) and i2c_master_hs (see Section 5.4)
uses the first mode of data transfer.

The second mode of operation uses the I2C FIFO Data Register (I2CFIFODATA) to write data to a slave
or read data from a slave using the FIFO. As with the first mode, the absolute address of the
I2CFIFODATA is programmed in the control structure of the µDMA for DMA based transfers. For the CPU
to access the data register, there are four APIs that are available.
• MAP_I2CFIFODataPut is used to write data to the TX FIFO in blocking mode. The API uses the first

parameter of the I2C base address to polls the corresponding I2C FIFO Status Register
(I2CFIFOSTATUS) to see if there is space available in the TX FIFO; if at least one byte space is
available, the data then writes the second parameter to the I2CFIFODATA register.

• MAP_I2CFIFODataPutNonBlocking is used to write data to the TX FIFO in non-blocking mode. The
API uses the first parameter of the I2C base address to check the corresponding I2CFIFOSTATUS
register to see if there is space available in the TX FIFO and writes the second parameter to the
I2CFIFODATA register. The API returns 0 if there is no space available (so it can be retried at a later
time) or returns 1 if the space was available and the data was written to the I2CFIFODATA register.

• MAP_I2CFIFODataGet is used to read data from the RX FIFO in blocking mode. The API uses the first
parameter of the I2C base address to poll the corresponding I2CFIFOSTATUS register to see if there is
data available in the RX FIFO; if at least one byte is available for read, the data is returned by the
function.

• MAP_I2CFIFODataGetNonBlocking is used to read data from the RX FIFO in non-blocking mode. The
API uses the first parameter of the I2C base address to check the corresponding I2CFIFOSTATUS
register to see if there is data available in the RX FIFO, and writes the data read from the
I2CFIFODATA into the buffer pointed by the second parameter. The API returns 0 if there is no data
available (so it can be retried at a later time) or returns 1 if the data was available and was read from
the I2CFIFODATA register.

The example codes of i2c_master_cpu_fifo (see Section 5.2) use the second mode of data transfer in
non-blocking mode.

4.5 Commanding Operation of the I2C Master
The I2C master function uses the I2C Master Control/Status (I2CMCS) register for performing any bus
transaction. This register is a write-only register, and read of this register returns the status of the I2C
master function. Thus, if a user writes to the register in the application code, it does not read back the last
command for the I2C master function, but instead it reads back the status of the I2C master function
resulting from the command.

The i2c.h file defines the different commands that can be sent to the I2C master function. From an
application code perspective, there are eight major commands that the application can use to control the
nature of the transaction from the I2C master.
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4.5.1 I2C Transmit Command: I2C_MASTER_CMD_SINGLE_SEND
This command is used when the I2C master function is required to write one byte of data to a slave. As
shown in Figure 8 when the I2C_MASTER_CMD_SINGLE_SEND command is sent, the I2C master
function sends the start bit (S), slave address of 0x50 with Write Bit clear, transmits the data written to the
I2CMDR and sends the stop bit (P).

Figure 8. I2C Transaction for I2C_MASTER_CMD_SINGLE_SEND

4.5.2 I2C Transmit Command: I2C_MASTER_CMD_BURST_SEND_START
This command is used when the I2C master function is required to write one byte of data to a slave and
own the bus. As shown in Figure 9 when the I2C_MASTER_CMD_BURST_SEND_START command is
sent, the I2C master function sends the start bit (S), slave address of 0x50 with Write Bit clear, transmits
the data written to the I2CMDR and holds the bus low for further operations.

Figure 9. I2C Transaction for I2C_MASTER_CMD_BURST_SEND_START

4.5.3 I2C Transmit Command: I2C_MASTER_CMD_BURST_SEND_CONT
This command is used when the I2C master function is required to an additional byte of data to a slave
when it owns the bus. As shown in Figure 10 when the I2C_MASTER_CMD_BURST_SEND_CONT
command is sent, the I2C master function transmits the data written to the I2CMDR and holds the bus low
for further operations.

Figure 10. I2C Transaction for I2C_MASTER_CMD_BURST_SEND_CONT

4.5.4 I2C Transmit Command: I2C_MASTER_CMD_BURST_SEND_FINISH
This command is used when the I2C master function is required to write one byte of data to a slave and
release the bus. As shown in Figure 11 when the I2C_MASTER_CMD_BURST_SEND_FINISH command
is sent, the I2C master function transmits the data written to the I2CMDR and sends the stop bit (P).

Figure 11. I2C Transaction for I2C_MASTER_CMD_BURST_SEND_FINISH

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SLAA776


Basic I2C Controller Initialization www.ti.com

12 SLAA776–October 2017
Submit Documentation Feedback

Copyright © 2017, Texas Instruments Incorporated

Using Feature Set of I2C Master on
SimpleLink™ MSP432E4 Microcontrollers

4.5.5 I2C Receive Command: I2C_MASTER_CMD_SINGLE_RECEIVE
This command is used when the I2C master function is required to read one byte of data from a slave. As
shown in Figure 12 when the I2C_MASTER_CMD_SINGLE_RECEIVE command is sent, the I2C master
function sends the start bit (S), sets the slave address of 0x50 with Write Bit, receives the data from the
slave, writes it to the I2CMDR, asserts a NAK to indicate to the slave that the transaction is completed and
sends the stop bit (P).

Figure 12. I2C Transaction for I2C_MASTER_CMD_SINGLE_RECEIVE

4.5.6 I2C Receive Command: I2C_MASTER_CMD_BURST_RECEIVE_START
This command is used when the I2C master function is required to read one byte of data from a slave and
own the bus. As shown in Figure 13 when the I2C_MASTER_CMD_BURST_RECEIVE_START command
is sent, the I2C master function sends the start bit (S), sets the slave address of 0x50 with Write Bit,
receives the data from the slave, sends the data byte for ACK, writes the data to the I2CMDR and holds
the bus for further operations.

Figure 13. I2C Transaction for I2C_MASTER_CMD_BURST_RECEIVE_START

4.5.7 I2C Receive Command: I2C_MASTER_CMD_BURST_RECEIVE_CONT
This command is used when the I2C master function is required to read one byte of data from a slave
when it owns the bus. As shown in Figure 14 when the I2C_MASTER_CMD_BURST_RECEIVE_CONT
command is sent, the I2C master function receives the data from the slave, sends ACK for the data byte,
writes it to the I2CMDR and holds the bus for further operations.

Figure 14. I2C Transaction for I2C_MASTER_CMD_BURST_RECEIVE_CONT

4.5.8 I2C Receive Command: I2C_MASTER_CMD_BURST_RECEIVE_FINISH
This command is used when the I2C master function is required to read one byte of data from a slave
when it owns the bus and then release the bus. As shown in Figure 15 when the
I2C_MASTER_CMD_BURST_RECEIVE_FINISH command is sent, the I2C master receives the data from
the slave, sends a NAK to indicate that the transaction has completed and sends the stop bit (P).

Figure 15. I2C Transaction for I2C_MASTER_CMD_BURST_RECEIVE_FINISH
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5 I2C Master Function: Interrupt, µDMA and FIFO Operation
The I2C master supports both the polling and interrupt driven mechanisms for performing bus transactions.
While the polling mechanism is simpler, the action of polling requires precious CPU cycles performing
status checks. The MSP432E4 family of devices now supports an exhaustive interrupt mechanism that an
application code may use to free precious CPU clocks for other device activities.

The MSP432E4 family of devices includes an 8-byte deep transmit and receive FIFO with configurable
trigger threshold. The FIFO enables the CPU to setup a bulk transfer with fewer interrupts per I2C
transactions leaving the CPU for other device activities.

The FIFO can be coupled with the efficient µDMA so that the CPU can be notified of a transaction
completion, thus, reducing the overall CPU clocks managing a data transaction.

The code examples in the following subsections illustrate each of the features so that the application
developer can leverage the I2C features of the MSP432E4 devices for improving overall CPU bandwidth
for essential system functions.

Each of the code examples mentioned below have logic analyzer captures associated with them, which
shows both transmit and receive plots. The plot contains the SCL and SDA IO for the I2C master function
and a GPIO toggle for interrupt, which is made high when the interrupt handler is called and made low on
exit.

5.1 Master Function for CPU With Non-FIFO Transaction
i2c_master_cpu_nonfifo is a simple code example in which the CPU uses the traditional I2CMDR to
access the slave for write and read operations with interrupts.

Figure 16 and Figure 17 show the transmit and receive operations. As can be seen for every data
transaction, the CPU is being interrupted.

Figure 16. Transmit With CPU and Non FIFO

Figure 17. Receive With CPU and Non FIFO
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5.2 Master Function for CPU With FIFO
i2c_master_cpu_fifo is a simple code example in which the CPU uses the I2CFIFODATA to access
transmit and receive FIFO to perform write and read operations to a slave with interrupts.

Figure 18 and Figure 19 show the transmit and receive operations. As can be seen, the CPU is now being
interrupted less than before; during the interrupt, the CPU can write or read the threshold of the data to
the FIFO. However, this is still sub-optimal as the buffer management has to be done by the CPU.

Figure 18. Transmit With CPU and FIFO

Figure 19. Receive With CPU and FIFO
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5.3 Master Function for µDMA With FIFO
i2c_master_udma_fifo is a simple code example where the CPU initializes and configures the µDMA to
use the I2CFIFODATA to access transmit and receive FIFO to perform write and read operations to a
slave with interrupt for the CPU on bus transaction completion. An important consideration in the code is
setting the arbitration size of the µDMA based on the threshold of the FIFO triggers. The code itself has
the optimal settings for the arbitration size as per the threshold of the TX and RX FIFOs.

Figure 20 and Figure 21 show the transmit and receive operations. As can be seen, the CPU is now being
interrupted only when the data transfer is completed by the µDMA and for handling bus events. This is an
optimal use of the FIFO when the µDMA performs the buffer management and only informing the CPU of
a transaction completion.

Figure 20. Transmit With µDMA and FIFO

Figure 21. Receive With µDMA and FIFO
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5.4 Master Function for High-Speed Operation
i2c_master_hs is a simple code example where the CPU uses the traditional I2CMDR to access the slave
for write and read operations with interrupts. The main transactions in this example are performed in high-
speed mode reducing the overall time spent by the CPU for write and read bus transactions.

For both transmit and receive, Figure 22 shows the entire transmission and Figure 23 shows the zoomed
in version with the baud rate for high speed.

Note that just like the other examples of using FIFO, CPU bandwidth for performing other system tasks
can be improved while reducing the overall transaction time for the I2C bus transaction.

Figure 22. Transmit in HS Mode

Figure 23. Receive in HS Mode
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6 I2C Glitch Filter Capability
An important feature on the MSP432E4 device is the I2C glitch filter that allows the application code to
robustly handle transient noises that may affect the master. This feature is applicable for both the master
and slave function of the MSP432E4 devices. The glitch filter feature is enabled or disabled without having
the requirement to set or clear a control bit.

The I2C specification requirement for glitch suppression is 50 ns for standard (fast and fast plus mode) and
10 ns for high speed mode. The MSP432E4 glitch filters work on the system clock and, based on the
system clock frequency, the value assigned to the filter must be adjusted to the nearest available setting in
the glitch filter register I2C Master Timer Period Register (I2CMTPR). For example, if the system clock is
120 MHz (8.33 ns), then for the standard mode glitch suppression of 50 ns would be a value of 6 system
clocks. The nearest available value is 8 system clocks. Similarly for high-speed mode, a glitch
suppression of 10 ns would be 1.2 system clocks, for which the value of 2 has to be programmed in the
I2CMTPR register.

The I2C glitch filter on the MSP432E4 devices uses the API MAP_I2CMasterGlitchFilterConfigSet. The first
parameter for the API is the base address of the I2C module and the second parameter is the filter setting.
By setting the value of the filter as 0 (I2C_MASTER_GLITCH_FILTER_DISABLED), the glitch filter is
automatically disabled.

/* Enable the Glitch Filter. Writing a value 0 will disable the glitch * filter *
I2C_MASTER_GLITCH_FILTER_DISABLED * I2C_MASTER_GLITCH_FILTER_1

* I2C_MASTER_GLITCH_FILTER_2 : Ideal Value when in HS Mode for 120MHz
* clock
* I2C_MASTER_GLITCH_FILTER_4
* I2C_MASTER_GLITCH_FILTER_8 : Ideal Value when in Std, Fast, Fast+ for
* 120MHz clock
* I2C_MASTER_GLITCH_FILTER_16
* I2C_MASTER_GLITCH_FILTER_32 */

MAP_I2CMasterGlitchFilterConfigSet(I2C2_BASE, I2C_MASTER_GLITCH_FILTER_8);

However, the I2C glitch filter on the MSP432E4 has an effect on the baud rate. Figure 24 shows the actual
baud rate for a system clock of 120 MHz and 16 MHz when the device is programmed for 100-kHz
operation. This can be compensated by overriding the TPR value in the I2CMTPR register after the
initialization APIs have been called.

Figure 24. Glitch Filter vs Baud Rate
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7 Conclusion
The new features of FIFO and µDMA for the I2C controller allow you to substantially improve the
performance of the application in terms of CPU execution cycle allocation to the other system tasks, while
ensuring that the I2C, in conjunction with the µDMA and FIFO, have better management of the data and
control transfer from the peripheral devices in the end system.
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