PRU Assembly Language Tools
v2.3

User's Guide

I3 TExXAs

INSTRUMENTS

Literature Number: SPRUHV6C
July 2014 —Revised July 2018

I3 TEXAS
INSTRUMENTS

Contents

[(=7 = T = PP 10
1 Introduction to the Software Development TOOIS . ..cvii i 13
11 Software Development TOOIS OVEIVIEWuueiueeiiueirsersterss it santssisstass s rasiainssannss 14

1.2 LI 1S3 =TS] o0 15

2 INtroduction t0 ODJECT MOAUIES ...t ettt et e e e e e e e e e enes 16
2.1 Object File FOrmat SPeCifiCatiOnuiiiieesiieies i ssaiessaaaresssaneessannnessaannressannnessasnnessennnness 17

2.2 ST oW = o] =@ =) 1 17

2.3 oo 18 Tox 1T I (o TS~ od 1T LN 17

2.3.1 SpeECial SECHON NAMES . .uttttiittetiiinteeseintessaaneesaasnnessaannessaanneessannnessennneesssnnnesssnnneeenns 18

2.4 How the Assembler HandIes SECHONSueiiiiiiii i r s s s e s e e ssann e s sannneesaannnenann 18

b2 R U T 1 = =T BT =od 1T LS 19

P22 3 141 = =T o ST =T ot 1o L 19

2.4.3 USEr-Named SECHONSutiiiiteiiiateesaaaneessaane e saaane s saaneessaannestaannnssaannnessaannersaannnernnn 20

A S O U ¢ (=1 ST =T o 1o o N 20

2.4.5 SeCtioN Program COUNTEIS ..uuuueestseeeessaaneessaannressaannessasnnessssnnnesessnnessssnnessssnnnessennnensnn 20

B TS 10 o 1S Yo 1 o 1S 21

2.4.7 USING SECHONS DIFECHVES .u.iuuutseiiiaieiiiats s iiitte s e ssaaa e e ssaa e s saaaansssaanassssanansssannnnsinn 21

25 How the Linker Handles SECHONS ...uueitiisiisiiiiiiii s e eraenas 23

2.5.1 CombiniNg INPUL SECHONS 1. v tuuttiseiiteriseia st r s s a e e s s rneaaneans 24

BT = ol o TS~ od 1o o S 25

2.6 71 01070 S 25

2.6.1 EXIErNal SYMDBOIS .. uuseiitiiiii e 25

2.6.2 WEAK SYMIDOIS ..ttt aaas 26

b2 TR T I T=T0S 3 V71 o T I 1= 1= S 27

2.7 53T 0T Lo = 0T 1T o 27

2.8 o = o 10 o JBF= 0 =0 = o 27

3 Program Loading and RUNNMING «.oouiuiiiiirn s r s et s et e s e e e e e e e e e e e e e naaas 28
3.1 0 =T 1o 29

o 0 0 R I = To =T o W AN o=]S S 29

R 0 2 = T Yo =3 1 =T o JN 1 = o {1 o 30

3.2 20 o 1 o 34

3.3 RUN-TIME INIHIAIZATION .. aet ettt e e s e et s e e s ra e e e s s ann e s s e e e ssnnn e s aanneeannns 34

3.3.1 The _C_iNtO0 FUNCHON 1 ttttttttiissnnnmessssssssssssnnns 34

SCTRC IV - Vg = 1o [N | 11 = 2= o] o S 35

R G T @0)V I o TN 37

3.4 N {0 814 T=T 0L T (o 0T o 37

3.5 L0 T3 L= = (o o U [o S 37

3.6 WX (o 1T i F= VN T (o g 4= Lo o 38

4 F SR ST =T aqY o] L= B LT Y o T o} 0 o PP 39
4.1 RS =T] 0 =T GO Y= g 1= 40

4.2 The Assembler's Role in the Software Development FIOWvvveiiiiiiiiiiiriiirin e 41

4.3 INVOKING the ASSEMIDIE . .ttt s et s s e s st e st s n s e s s st e s ssann e s aanneeannns 42

4.4 Naming Alternate Directories for ASSEmMbIEr INPULviiiieeiiii s eii e iai s e s saaneeessannresrannneeannn 43

4.4.1 Using the --include_path Assembler OPtionc.vvieivieiiii i 43

2 Contents SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

I3 TEXAS
INSTRUMENTS
www.ti.com
4.4.2 Using the PRU_A_DIR Environment Variableoveiiiiiiiiiiiii i i sian e nnes 44
4.5 SoUrce StatemMeENt FOMIAT. .. .uuiiee i i s s s s s s s n e aaaaa e raaarenss 45
4.5 1 Label Field..uuiieeiiiiiiiiiiii i e 46
30 |V 1 T= 0 T o o =] o 46
T B ©] =7 - o T (o 46
4.54 CommeENt FIEld .uuiuiiiiiiiniiiniii e 47
4.6 [0S = L O 0] 1] r= g1 £ a7
G 0 A 11 (=T 1= I =T =1 a7
4.6.2 Character String LItEralS......euvieeiiiiiiiiiii i raa s s s aaannes 49
G Tc J oY= L4 o 01T o 1 (=7 = L 49
4.7 ASSEMDIEr SYMDIOIS . uvi ettt 49
0 R o =T =T £ 50
7 - 0T L 50
A T o Yo | - o= 50
Y 0 01 T o @ o 1 7= g £ 51
4.7.5 Defining Symbolic Constants (--asm_define Option)c.vvveiiiiiiiiiiiiiiiii e 52
4.7.6 Predefined SymbOliC CONSIANTSuiiiiiiiii i r e s e e s saane e s rranna s s sanresaannns 53
O A (=0 1= (T 53
4.7.8 SUDSHIULION SYMDOIS. .. .utistiiieii e s 53
4.8 o] (=77 T L 54
4.8.1 Mathematical and LOGICal OPEIatOrS .u.uuueseiiiuuteiriunresainrersiiaresssisesisasnsssainsessaasnsssannes 55
4.8.2 Relational Operators and Conditional EXPreSSiONSv.usivusiriutiiieiiiiieriiasiarsanneaaeianes 56
4.8.3 Well-Defined EXPrESSIONS .. .uttieteeiateeaaneesaaaanesaaanessaaaasessaantestaannesssannressaanrnsssnnnns 56
4.8.4 Relocatable Symbols and Legal EXPreSSIONS t.uuuueiiiuetetianutseiiinrssrsinnssssinnssssainnssssinnssisnnes 56
4.8.5 EXPresSiOn EXamMPIES ... et e e 57
4.9 BUilt-in FUNCLIONS @NA OPEIATOIS «..uuuesetiieteeisaetessaaase s saaanr s saaaas e s aaanessaannessaannnsssannnessannnnsssnn 58
4.9.1 Built-In Math and TrigoNOMEetric FUNCLONSuuuieiiiteiiiiessiiessssiss s ssiansssaissessannnssssannns 58
T Yo T ot £ oL 59
4.11 Debugging ASSEMDIY SOUICE . .uuutiiuetiatiite ittt s s et e e ranes 61
4.12 CrOSS-REfErENCE LISHNGS . uueeiiuuueeiisnneiiissesisnsne s sastessaasssstsaasrsssaasnrsssasansssaasnssssannsssasnness 62
5 ASSEMBIEr DIFECTIVES 1ouitiiiiiiii i e e e e 63
51 D £ (AT ST U o 2 64
5.2 Directives that DefiNe SECHONS ...t ivittiiiiii i it naeanaes 68
5.3 Directives that INtialiZe ValUES ...vuuise i aeas 69
5.4 Directives that Perform Alignment and RESEIVE SPACE.....uviiriiiuiiiiiiiiiiiii i raeens 72
55 Directives that Format the OULPUL LIStINGS ... uueiieeiiiiiee it s s e s rr s ss s e ssanneeanans 73
5.6 Directives that Reference Other FIlesSouiiuiiiiiiiiiiiiiiir e 74
5.7 Directives that Enable Conditional ASSEMDIY......ueeiieiiiiii e 75
5.8 Directives that Define Union OF SIIUCLUIE TYPES 1.uuueeiiinieiiiieesiraiatesiaatesssasnessannssssaannessaannresanns 75
5.9 Directives that Define ENUMErated TYPES .uuueeiiiieeeisaineesteinnesssanneessannresssanneessannressssnneesssnneessnns 76
5.10 Directives that Define Symbols at ASSEMDIY TIME ...viuuiiieiii i e 76
5.11 MiSCEllaNEOUS DIFECHVES 1. uutiustiiuseiiteriseiastesiat et sar sttt ra s e et s s aanrerareaas 77
5.12 DireCtiVES REMEIENCE ...ttt e sttt 78
6 Macro Language DeSCIIPTIONue ittt et e e e e e e e e e e e e e e e e eaens 136
6.1 L L3 T T Y= Vo (o1 137
6.2 972 11 0T o 1Y = T L 137
6.3 Macro Parameters/Substitution SYMDOISuuiiiiiiiii i e 139
6.3.1 Directives That Define Substitution SYmbOIS.........ccuiiiiii e 140
6.3.2 Built-In Substitution SYmbOl FUNCHONS ...uuiiieisiiiiiteii i s s s e raanes 141
6.3.3 Recursive Substitution SYMDOISeiueiiiiiii i 142
LR F N o T o =0 BT 01 (110} 142
6.3.5 Accessing Individual Characters of Subscripted Substitution Symbols...........ccovviiiiiiiiinnnn 143
6.3.6 Substitution Symbols as Local Variables in MACIOSviveeeiriiieeriaieersainerraanneesaannnersnnnes 144
SPRUHV6C-July 2014—-Revised July 2018 Contents 3

Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

I3 TEXAS

INSTRUMENTS
www.ti.com
6.4 Y= Tt o I o] = 1= 145
6.5 Using Conditional ASSEMDBIY iN MACTOS ...ttt rr e r e aee e rr s s s saaan e s sranna s s sannnasaaannns 145
6.6 L L3 T = LT ST 1 T o L 147
6.7 Producing MeSSages iN IMACIOS . .uuuuueeiutiteianeisas st raessiee et sisssassrase e s sanrsansssanssannens 148
6.8 Using Directives to Format the OUIPUL LISTING . ..eevineieiiie it ra e s rraas e s sainne s snanne e nannns 149
6.9 Using Recursive and NESIEA MACIOS 1.uuuueiiiuuresiiutssisistessaianresaanresaaisnssasasssstaaissesssansnsssnnnns 150
6.10 MACIO DiIr€CVES SUMIMAIY .t uuuttiuseiueesateraesaaeess e saas s sa st s saaetaae e s s s saae s sa s s s e saseasnesannsannes 151
F N o] TRV =Y TS of T o} 1o] o P 152
7.1 ATCRIVET OVEIVIEW 1. utiitiiteiist sttt a et t s e et s e s e e ra e s s e e s e a e e s n e aaa s e n e naneaaans 153
7.2 The Archiver's Role in the Software Development FIOW.uiiireiiii i i s s s sanne e s aannneas 154
7.3 INVOKING the ArCRIVET . a e s r e rneaas 155
7.4 F Y (o] Y = T] 0] = 156
7.5 Library Information ArChiver DeSCrPtiON ... et ii et it e e e e e s s e s s aanne e saanneesaannnesaannnness 157
7.5.1 Invoking the Library Information ArChiVerv.seiieeiiie i e raaes 157
7.5.2 Library Information Archiver EXamPIevoueeeiiiiieiiiiteiriinessaier e ssaiaesssaanaessanansssannes 158
7.5.3 Listing the Contents of an INdeX Librarycoeeeiiiiiiiii i s i s s s e s seinee s sannnee s annnes 158
470 =T 81T = 4= 01 £ 158
[T)= I T o o) 1 o Y o P 159
8.1 (] B O YT = 160
8.2 The Linker's Role in the Software Development FIOWviveeiiieiriiiiiii i i aneeas 161
8.3 LY7o (T T TR LT X T N 162
8.4 [T =T 0 1] 163
8.4.1 Wildcards in File, Section, and Symbol Patternsc.cvviiiiiiiiiiii e reia e s snanneennnnns 165
8.4.2 Specifying C/C++ Symbols with Linker OptioNSueevissivssrisririeiiiiirisisisseraneaaaes 165
8.4.3 Relocation Capabilities (--absolute_exe and --relocatable Options)ccevviiiiiriiiiiiiiineians 165
8.4.4 Allocate Memory for Use by the Loader to Pass Arguments (--arg_size Option)ccvvvevvineinenn. 166
8.4.5 Compression (--cinit_compression and --copy_compression OPtioN)ccevvvveiereriianrerraanneeenns 166
8.4.6 Compress DWARF Information (--compress_dwarf Option)veeeeeiviiesiiiiieesiiiinnieesianes 167
8.4.7 CoNtrol LiNKer DiagnOStiCS .. v uuueiuutiruterineiseesartrsssss s sanssis e ssias et sasssaneaanness 167
8.4.8 Automatic Library Selection (--disable_auto_rts OPtion)eevveiieeiriiieeiaaiesraanessaaneeesaannss 168
8.4.9 Do Not Remove Unused Sections (--unused_section_elimination Option)ccevvvviinniinnnnennns 168
8.4.10 Linker Command File Preprocessing (--disable_pp, --define and --undefine Options)................ 168
8.4.11 Error Correcting Code Testing (--€CC OPLIONS) +.uuuuueeiiiiieiiiiieeiaainresraanarsraanrsssaanresaaannes 169
8.4.12 Define an Entry Point (--entry_point OPtioN) ...euueeueesissseesisissssiiassesrainressaassersannnessannnes 170
8.4.13 Set Default Fill Value (--fill_value OPtioN)vuueiiseiiieerieeinirine s iaessinssanessns 170
8.4.14 Define Heap Size (--heap_Siz€ OPtiON)iuee ettt rriae s raaanr e sraanre s aaanesaaanns 171
8.4.15 HidiNg SYMDOIS . .uiiiiiiiiiii i 171

8.4.16 Alter the Library Search Algorithm (--library Option, --search_path Option, and PRU_C_DIR
ENVIironmMent Variable).o..ee i 172
8.4.17 Change Symbol LOCAliZAtION 1. ..uueiiietsiiiieiiiie s s r e s r e s s rrr s s e srannes 175
8.4.18 Create a Map File (--map_file OPtioN) ...vuuiieeiiiiiii i s raes 176
8.4.19 Managing Map File Contents (--mapfile_contents OPtion)oeeiiiiiiiiiiiii i rraanes 177
8.4.20 Disable Name Demangling (--n0_demangle)c.ceeiiiiieiiiiiniiiii i rarnsraanes 178
8.4.21 Merging of Symbolic Debugging INfOrmMationcveeiiieiiiiii e 178
8.4.22 Strip Symbolic Information (--no_symtable OpPtioN) ..uv.eevvssiieeriseiiiriariie i 178
8.4.23 Name an Output Module (--output_file OPLtioN) ..uuueeeiiiie i i i raaes 179
8.4.24 Prioritizing Function Placement (--preferred_order Option)uevveeriesiiiiiniiiie e 179
8.4.25 C Language Options (--ram_model and --rom_model OPptioNS)vviiiieiriiiireriiiirerrianeeanas 179
8.4.26 Retain Discarded Sections (--retain OPLtioN) ...uuivveesiriieeiiiiesiriires i aarresrannressannnes 179
8.4.27 Create an Absolute Listing File (--run_abs Option)c.vvieiiiieiiiiiiini i 180
8.4.28 Scan All Libraries for Duplicate Symbol Definitions (--scan_libraries)ccvvviiiiiiiiiiiinnnnnns 180
8.4.29 Define Stack Size (--Stack_Size OPLioN) .uuvuueseiiiitsiiii i s aaire s aaaes 180
8.4.30 Enforce Strict Compatibility (--strict_compatibility Option)c.eviieiiiiiiiiiiii s 180
Contents SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

I3 TEXAS
INSTRUMENTS
www.ti.com
8.4.31 Mapping of Symbols (--symbol_map OPtioN)veueereeiiueiriii i ans 180
8.4.32 Introduce an Unresolved Symbol (--undef_sym Option).......veeeiiueiiieeriiiininneineenans 181
8.4.33 Display a Message When an Undefined Output Section Is Created (--warn_sections) 181
8.4.34 Generate XML Link Information File (--xmI_link_info Option).......ccoviiiiiiiiiiiiiiiininiannans 181
8.4.35 Zero Initialization (--zero_init OPtiON) ...ueuieeseiiite i ra i rrane e ssannae s saannneaiannns 181
8.5 Linker Command FilES ... uuuiiueiiisiiiiiiiiir i 182
8.5.1 Reserved Names in Linker Command FileS......civiiiiiuiiiiiiiiiii i aaes 183
8.5.2 Constants in Linker Command FileSvveiiiiiiiiiiiiii i i 183
8.5.3 Accessing Files and Libraries from a Linker Command Filecceviiiiiiiiiiiiiiiiiiiiiiinans 183
8.5.4 The MEMORY DIFECHVE +.uutiuttiutinteiiteiatesatists s saats e tae s s s sas s s s saarsrass e aaness 185
8.5.5 The SECTIONS DilECHIVE .. uueutiusiseiutsatisarssstrtsssrsesrrassassaassar st sassassartassanssesnnsnes 188
8.5.6 Placing a Section at Different Load and RUn AddreSSeSuviiiieiiiiiiiiiiiiiieiiiiesisninneiianes 200
8.5.7 Using GROUP and UNION StatemMentSuevvuesiueinunerssinessintiissiisssannesissiasssinssanssrnns 202
8.5.8 Special Section Types (DSECT, COPY, NOLOAD, and NOINIT)...uuuriuiiiurininniiinerineiiinerinnians 206
8.5.9 Configuring Error Correcting Code (ECC) with the LinKer........vivereiiiiiiiiiiii i i 206
8.5.10 Assigning SymboIs at LinK Time .. .ueiueiiieiiiiii i s s aaees 209
8.5.11 Creating and FilliNg HOIES ... ueuiii i e e e r e e s s a e s s rane s s sann e s aanns 213
8.6 TS24 0 £ 216
8.6.1 Using Linker Symbols in C/C++ APPIICAtIONS ...uviuiiiieiiiiiniie s 216
8.6.2 Declaring Weak SYMDOIS ... et aanas 217
8.6.3 Resolving Symbols with Object LIDrariesve.eeeiiiiisiiiii i i sr e anaes 217
8.7 Default Placement AlGOrthmt s e 219
8.7.1 How the Allocation Algorithm Creates OutpUt SECHIONS ..uvuuiiiseiiseiiiriri i raaieeaaes 219
8.7.2 Reducing Memory FragmeEntationeesseesssrsiesssssansssaiessssaissssasassesssansnssssannsssannns 220
8.8 Linker-Generated COPY TabIES .. .uuiuuiiiiiiiiiii i s s e r e raaeaanens 220
8.8.1 Using Copy Tables for BOOt LOAMINGuuetieteiinite it asaaaeesaa e s snane e ssannne s saannnessanns 220
8.8.2 Using Built-in Link Operators in Copy Tablescvveiiiiiiiiiii i i s 221
8.8.3 Overlay Management EXampleueiuiiieiiiiiiiie st s i s 221
8.8.4 Generating Copy Tables With the table() Operatorovoeiiiii i i e raaes 222
SRS 0T @0 1 o] =27 T o 227
ST JE I @e o) VAN 1= o] L= O 0] 1 (=T o] £ 230
8.8.7 General PUrpOSE COPY ROULINE . ..uuiitteiiiiteaaaitt e s e s aaan e s sraan s s saanne s ssannaessannnassannnns 230
8.9 Partial (INncremental) LiNKINGeeuirseeeiiieiiiersire s ss i s ss s s s aae s saaan st saansesssannnesras 231
8.10 LiNKING C/CH4 COUB 1 uuuttiuttiuterneisessatsaate e saae st as s s s sa e s s e sa e e s aa st a s s saa s saat e saneaanesanns 232
8.10.1 RUN-TIME INItIAlIZAON +1uuetistiiseiater e r s s s r e e aannens 233
8.10.2 Object Libraries and RUN-TIME SUPPOI «uuuuuuutetiiintesirintesraansrsssinsrsssainsssssansessasinesisanns 233
8.10.3 Setting the Size of the Stack and Heap SECHONSvvvviiieiiiiiiiiiri i rneeaes 233
8.10.4 Initializing and Autolnitialzing Variables at RUN TiMe......uiiiiiiiiiiiii i e rrine e raaes 233
S 0 O O IR 1= g e]] 234
9 ADSOIUtE LiSter DESCIIPLION 1vuisiieiiiiiiiiii e s s s e eaas 237
9.1 Producing an ADSOIULE LiStING +uueevuutsiuseiiserssissssrsssnte s rsss s sar s san e ssassaaneens 238
9.2 INVOKING the ADSOIULE LISTET 1. uuussiiieteiiiit it e e s r e e e s s s e s s e s sraas e s saan e s saann e e ssannnesanns 239
9.3 P 010 0 (R 1] (T g == g] o] - 240
10 Cross-Reference LiSter DeSCIIPLIONue et e e e e e e e e e e rn e e eenes 243
10.1 Producing a CroSS-ReferenCe LiStNg «..uuueeeiieieeiiiie i ir e s e s saar e s s an s ssanr e sananneaannns 244
10.2 Invoking the CroSS-RefereNCE LISTEI .uuuuiuueeiiiieeiiiieesiiites s raisre s ssasr s ssan s ssaaan e aaannraaanns 245
10.3 Cross-Reference LiSting EXAmMPIEueieiiiiieiiie i s s s r s e 246
11 (@ =03 i L U T L= PP 248
11.1 Invoking the Object File Display ULee e s ree s e s s s rar s s s nan s s an e e aaas 249
11.2 INVOKING the DiSasSEmMIbIEr. ... uueeiiiitet i it s e e s s s e saaane e s aaannessasnneessannnessaanneessannnnsssnnnnessnn 250
0 I S 10177 4 0 o R €T = 10 0 =T 252
IO S [1Y/ (T T T £ T 1] o 01712 253
SPRUHV6C-July 2014—-Revised July 2018 Contents 5

Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

I3 TEXAS
INSTRUMENTS
www.ti.com
12 Hex Conversion ULty DeSCIIPLION ..ttt e e e e e aeas 254
12.1 The Hex Conversion Utility's Role in the Software Development FIOWocviiiiiiiiiiiiiiiiiinienae 255
12.2 Invoking the Hex Conversion ULIIYuuoee i e s e s s e s s r e s s s e asnn e e anaas 256
12.2.1 Invoking the Hex Conversion Utility From the Command Linecioiieiiiiiiiieiiiiiniinneennnns 256
12.2.2 Invoking the Hex Conversion Utility With a Command Fileocevviiiiiiiiiiiiiinene 258
12.3 Linking with @an ARM EXECULADIEueiiiie i et e s s s s s r s s s n s aanne e annns 259
12.4 Understanding Memory Widthsuueeiiiiii i i i s s s e s e snee s ssanee s s aanneesannnnessannnnessannnnssnn 259
1241 Target Witth e e 259
12.4.2 Specifying the Memory Width ..o e aaee s 260
12.4.3 Partitioning Data INto OUIPUL FIlES ...ueiiiiieeiiii i e e s e s e s snr s ss e e saannesaannnenss 260
I TSN oL@ 1S I T = o)1V 263
12.5.1 When to Use the ROMS Dilr@CHVEueiiiiitiiiiiieiiiite s iaitsessaare s raians e saan s saaannesaaannness 264
12.5.2 An Example Of the ROMS DirECHVE c.uuttiieeetiiintesiianneessasnnessasnneessssnnessasnnessasnnnessssnnesss 264
12.6 The SECTIONS DilECHVE ... uustutitieeraerttstaasrae st sassaas e s sttt sassassaassaesassanssnnsnnsnnssnnsns 266
12.7 The Load Image Format (--load_image OPLioN)eeeireteiiiiteiiiiesrriiesrsaiass s ssine s ssanansssannneeaas 267
12.7.1 Load Image SecCtion FOIMatioN ..u...ueesieisseessaneessaannesssanneessasnnessasnneesssnnnessssnnnssssnnnesss 267
12.7.2 Load Image CharaCteriStiCS .uuuuurirussiiseiiserseiaesriariasss s sarerasesae s e sanrssaneras 267
12.8 EXcluding @ SPeCified SECHON. ..uui ettt s s s e s a e aas 268
12.9 AsSIgNING OULPUL FIlBNAIMES . .uuiiiiiieiiiie et aie s s st seaane e s aaanneesaaaneesaaannessaanneessannnnsssnnnnessnn 268
12.10 Image Mode and the -—fill OPtION ..uu.ueeiiseiiii e e r e aaneans 269
12.10.1 Generating @ MemOrY IMAGEuuuueeiiiieeiiitee it rr it saaas e saaaar e saaansssaaanssaannesss 269
12.10.2 Specifying @ Fill ValUeueeiiiiii i s i s e s st s s s e e sa s e e s ae s e s sannneessannnessannnnennnn 270
12.10.3 Steps to Follow in USINg IMage MOGE.....iiueiiieiiiiiiie i s aaanens 270
D o N oY 1011 0T | o] T 270
12.12 Controlling the ROM DeViCe AQAIESS .. uuiireeetteineeeseantessaanneeseasnresesannesssssneessssnnessssnnnessssnnnnsnn 271
12.13 Control Hex Conversion Utility DIagNOSHICS «.uuuuiuseiiuterssiisserisssnseiiseissesasssssssinssaneanesannesanns 272
12.14 Description of the ODJECt FOIMALS. . ..uuiit i s s s aae st s s e s ra s e s sanneeanas 273
12.14.1 ASCII-Hex Object Format (-—asCii OPtiON) ..uevveieeerieineessaieessraseessaannesseanneessannressennnees 273
12.14.2 Intel MCS-86 Object Format (--intel OPtioN)ueevssirserinrirreriirie s raaeaaaeens 274
12.14.3 Motorola Exorciser Object Format (--motorola Option).......vveeeeeeiiiiieiiii i raniaeesranes 275
12.14.4 Extended Tektronix Object Format (--tektroniX OPtioN)vevieieresreiiererisineessasnneesannnnesrnnnes 276
12.14.5 Texas Instruments SDSMAC (TI-Tagged) Object Format (--ti_tagged Option)ooevvireineennns 277
12.14.6 TI-TXT Hex Format (--ti_tXt OPLiON) wouvuuueeeiiiteeiiitee e s srinr e saanee s saanan s saannenss 278
13 Sharing C/C++ Header Files With Assembly SOUICEe.....ciiiiiiiiiiiic e 279
13.1 Overview Of the .COECIS DIrECHVE . .uuuueiiet ittt st s s s s s s r e s e aaneanes 280
13.2 NOtES ON C/CH+ CONVEISIONS . uutiuetesiantsesaastessaaaneeaaaanrssaaaanessaasnsssaaannessaannnssssannesssnnnnsssns 280
R o 0 0] 10T 280
13.2.2 Conditional Compilation (#if/#else/Hfdef/etC.) . vvriiiii i 281
R 0 S e = 0 | o = 281
13.2.4 The #error and #Warning Dir€CHVES ...uuiviueeiiiie i i r s as e aaaneeas 281
13.2.5 Predefined symbol _ _ASM_HEADER _ _ ..iuiiiiiiiiiiieiit i s ss s s ssassaneaaanens 281
13.2.6 Usage Within C/C++ aSm() StateMENTS. ..uiuueiiseirnriitiriseiire s s, 281
R T A N U= T d 18 o L= I =T o L 281
13.2.8 Conversion Of #AEfiNE MACIOS +..uviiuuiiitiiie i reeaas 281
13.2.9 The HUNAEf DIFECHVE . .uueiiiii it it et st e s s e s sa s e s aaana e s saanne e s aannnessannnneannn 282
13.2.10 ENUMEIALIONS tuuiiuustseisansessanessssneessaass s ssassesssaasssssassessaasssessannnnssaannnesssnnnsssnns 282
IR 72201 I O O 1 o 282
13.2.12 C/C++ BUIlt-IN FUNCHONS .. .ueteiiieieiiiit et e s et e e s e e ss e s s ss s e s saann e s sannnessaannneesnn 283
13.2.13 StruCtureS and UNIONS ...uuusseisistssssstsessissesssissssssassnssaasnssssssssstaassssssssnnnssssnnnessas 283
13.2.14 FuncCtion/Variable ProtOtYPeS «uuuriuseiseiiteiteiateriat st sias s rass s s e ssiassanrsaeeias 283
R B S O 0] 1S3 = T | A1 35 284
13.2.16 BASIC C/CHt TYPOS uuttiiuutetiinttessinnesssiansessasssesaassssstsassnsssanssestsassnsssssnnessssnnssssns 284
13.3 Notes 0n C++ SPECIfic CONVEISIONS uuuuuutisteiteiaterasiaes st srre s s saasaaars e aainesannss 284
6 Contents SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

I3 TEXAS
INSTRUMENTS
www.ti.com
IR T 04 R N\ =TT 01T U T |1 o 284
IR TR 7 I L= 1T o 3 T 284
R TR T0C T = 010 (3 285
IR TR 0 S VT4 (1 T T 10 o 285
13.4 Special ASSEMDIEr SUPPOIT. 1. uutust ittt e eraa e s s s 285
13.4.1 Enumerations (.enum/.emember/.eNdeNUM)oieeeiiiieeiiiiii i rrarr s aaannes 285
13.4.2 The .defiNe Dir€CHVE ..uueiietiieeiit s s s s s e s a e s s e asn e s n s r e s saneans 285
13.4.3 The .undefine/.uUNasg DIrECHIVES ...uiuueiiutirseiisiiira i s s ra s raneaas 285
13.4.4 The $defined() Built-IN FUNCLION +1uuieiisiiiiiin s e r s s eaes 286
13.4.5 The $sizeof BUilt-In FUNCHON ...vuuiiieeiiir i s e i aeens 286
13.4.6 Structure/Union Alignment and $alignof() «..oveevieiieiiiiiiiii i 286
13.4.7 The .CStNG DIlECHVE .. vttt is it sr i r e s e s ts e st s aaa et saanaa s ssannnessannnreanas 286
A Symbolic DebUQGQING DirECHIVES ..uuititiiiiiii et s e e e e e neeens 287
Al DTN o I T=T o U T o 1 T TN o 3 - 288
A.2 (D= 10T B =T ot Y] = 0N 288
B XML Link Information File DeSCriptioN ..o r s e ee e e e 289
B.1 XML Information File EIEMENt TYPES .uueiutiieeiutirteiseisee s s s sasssanesassssessanrsannssnnss 290
B.2 D0 1ot =T gL = 1= T 290
B.2.1 Header EIBMENTS .uuiiuiiiisiiiiiiiiiiiiiiiii i e 290
2 2020 [] 0| 1=) 291
122 T @ o TT= ot A @] 0] L] 1= o | A L] 292
[S 1o o[- | o 11 o] 293
2B T o T =T o 0= | /- T 295
B.2.6 SYymMDOl Table ... e 296
C Hex Conversion ULty EXamPles ... ettt e e e e e e e e e ns 297
C.1 Scenario 1: Building a Hex Conversion Command File for a Single 8-Bit EPROM........c.ccviiivvviiinennnnns 298
C.2 Scenario 2: Building a Hex Conversion Command File for 16-BIS Codecoviiiiiiiiiiiiiiiiiieiiiineenns 302
C.3 Scenario 3: Building a Hex Conversion Command File for Two 8-Bit EPROMScccvviiiiiiiiiiiinnennnns 305
D €10 1T Y= 1 PP 309
5 20 R =T 301137 (o) 309
E REVISTON HiSTOTY . ueitieiiie et r eens 314
E.l ST 0T =T | Y1 0 314
SPRUHV6C-July 2014—-Revised July 2018 Contents 7

Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

I3 TEXAS
INSTRUMENTS
www.ti.com
List of Figures

1-1. PRU Software DevelopmeENt FIOWuiiueiiissirseiisiiieerisesis s ssse s s s sassraasaannesans 14
2-1. Partitioning Memory INto LOGICal BIOCKS +.uuuuuussiiiiieiiiiisiiiine st sssies s sssae s ssinae s ssaaane s sannesnas 18
2-2. Using Sections DireCtiVes EXaMPIE ... uu ettt r s s e aanrens 22
2-3. Object Code Generated by the File in ... e raannneeas 23
2-4. Combining Input Sections to Form an Executable Object Module..........ccviiiiiiiiiiiiiiiiii e 24
3-1. Bootloading Sequence (SIMPHfied) ..ove i e 30
3-2. Bootloading Sequence with Secondary BOOtIOAAETvviueiiieiiiiiiiiiiiri i 31
3-3. ROM-Based Variable Initialization Via CINIT....ueeuiiseiiiniiiiiiiii i aaes 35
B I =T o 11 T o 1o) o 36
4-1. The Assembler in the PRU Software Development FIOWuvieeiiiiiiiiiiii i nssisssiannsenaas 41
I = 10 o] L= NS o] o] = gl £ 1 o 60
5-1 QLT =1 (o N1 =T o 11 70
ST [011 (= 2= 0T g T DT =T o 1Y 71
LS FO 8 0 U= | [o o I 1T =T o 1= 72
5-4. The .Space and .DES DiIr€CVES ...uuieiiuiiieiriiie i r e ra e s e e e aanens 73
5-5. Double-Precision FIoating-PoiNt FOMMALueeiitiiiiie e r e e rr e e ssaanne s saannn e s aannneenn 94
5-6. The .field DireCtVE cuuiutiiistiitiiisiiis it a s e a e 101
5-7. Single-Precision Floating-Point FOMMatveiiiiiiieiiiiii i s aseeranes 102
5-8. The .USECE DIFECHIVE 1uusiiustiteiseisseratest et s e s s s e e ra e ra e s et s s st s s st e na e e sn e ranees 134
7-1. The Archiver in the PRU Software Development FIOWeuiviiiiiiiiiiii s s esnanee s 154
8-1. The Linker in the PRU Software Development FIOWvvueirieiiiiiienirs e sinesnanesaaes 161
8-2. Section Placement Defined DYueiieiiiiiiiiiii i 190
8-3. Memory Allocation SNOWN IN @NO ...uueieiiiieiiie s r st a s s as e s asaane s saannensns 203
8-4. Compressed COPY Table ...uuiuiiieiiii i e 227
8-5. HaNAIEr TaDIE .o e 228
9-1. Absolute Lister Development FIOWeuieeeiiiiieiniiers i sr i s s s s ass s ssae s ssanaa e s sannnessas 238
10-1. The Cross-Reference Lister Development FIOWv.eiiieiiie i s naes 244
12-1. The Hex Conversion Utility in the PRU Software Development FIOW........cvvviiiiiiiiiiiiirinninnnaes 255
12-2. Hex Conversion ULility PrOCESS FIOW. . .uuiiuueeiiiiieeiiitesisitsesssianssssiaessssias s sssnnesssannsssannnessns 259
12-3. Object File Data and Memory WIdthseiieeiiiiiiii s s s ranees 260
12-4. Data, Memory, and ROM WIdLhSueiiiiii i i r e s s e s s s s s s e s s anannn e s aannenans 262
12-5. The infile.out File Partitioned INto Four OULPUL FileSuueeiiiie i s eeas 265
I T ST O | B 1= Q@ o] =T ot A e T | 273
12-7. Intel Hexadecimal ObJeCt FOIMAL.ueiiieei it ittt e s e s s a e e s ssan e s saann e s ssannnessannnnnsns 274
I FR Y (o] o] 0] =T T o 1 T L 275
12-9. Extended Tektronix ObJECt FOIMALueiueiieiiieiiee i s e r s s s s e raaeaannens 276
2 O I B I To o T=To B @ o] 1= od o 0 T N 277
I o I 19 G] 1= o o 0 1 278
C-1. EPROM Memory System fOr SCENANO L ..uueuutiiueeintirteiiueiaiseraasisessisrsass s sars s sassainssanes 298
C-2. Contents of Hex Output File eXampleL.neXouiieeiiiiiiei i e s ra e rraanresannnneeaaanneess 301
C-3. EPROM Memory System fOr SCENAIIO 2 «uuuuuueeiiiutesiiintseisistessaiansessinsssssassnssasasssisasnnsiaannesss 302
C-4. Contents of Hex Output File eXample2.neXuuiieiiiiii i e e eaees 305
C-5. EPROM Memory System fOr SCENANO 3 1.uuiiuuiiiseiisrirneiiseisserisissssisrsass s sarerase e 305
C-6. Contents of HEX OULPUL FlE ... uueiieeiii i s e s e s s s e s s s s s s s s s s n s asannneaanns 308
List of Figures SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

I3 TEXAS

INSTRUMENTS

www.ti.com

List of Tables

O = o LU NS o 4]] 1= S @ o] (o] gL 42
4-2. PRU Processor SYmMbOIC CONSIANTS ...uuutsiiieteisiatsssaisesisaiasssssisesssasssssanssssssasnsssannrssssinnnes 53
4-3. Operators Used in EXPressions (PreCEAENCE) .uuiuuiirieiiseiiterinniisssistsatsrias e sasssinssannssnns 55
4-4. Expressions With Absolute and Relocatable Symbolso s 56
4-5. Built-In Mathematical FUNCHIONS uuuiueiiissiiseiisiii i i s s n e raaes 58
T Y7 1 o To N 111011 =T 62
5-1. Directives that Control SECHON USE.....uuiiusiieiiiiiiiseiiriisri i s raneans 64
5-2. Directives that Affect Unused Section ElIMinationccvviiiieiiiiiiiiiiiiiiiiiiii s 64
5-3. Directives that Initialize Values (Data and MEmOIY) ..uuireeriuterreiiirierrasis i aesinssarsrns 64
5-4. Directives that Perform Alignment and RESEIVE SPaCEuuiriiiiiiieiiiites it saarresaaanresaaanness 65
5-5. Directives that Format the OULPUL LiStING «..uueeeiiiiuesiiiiieiinie s s s s ssaaee s sainne s ssannnesas 65
5-6. Directives that Reference Other FIleSivuuiiieiiiiiiiiiii i i s eens 65
5-7. Directives that Affect Symbol Linkage and VisibDilityccoeeiiiiiiiiii e ae e 66
5-8. Directives that Enable Conditional ASSEMDIYuiiiuuiiiiiiiiii i s aaane e 66
5-9. Directives that Define StrUCIUIE TYPES .uuiuueiieiiii it aa s raasaaneans 66
5-10. Directives that Define SYMDOISuue i 66
5-11. Directives that Create or AffECt MACIOS 4.ivuuiiisiiiiiiisiii i i aanens 67
5-12. Directives that Control DIagNOSHCS . uuuueiiueireeiiattiseiire s ras s raasaannens 67
5-13. Directives that Perform Assembly SOUrce DebUQg.......cviiiiiiiiii e ne e 67
5-14. Directives that Are Used by the ADSOIUE LiSter....uuuueeiiiiieiiiiie i aanneeas 67
5-15. Directives that Perform Miscellan@ous FUNCHONSuuuiiiesiitirteiirie s s ranne e 67
6-1. Substitution Symbol Functions and RetUIN ValUES.......vivueiiiiriiiiiiniii i sassssnsssinnsnanes 141
L O = 111 T 1Y = o] 0L 151
6-3. Manipulating SUbStItUtION SYMDOISuuiiie i s s 151
(R S @70 o 1[0 F= I NS =T 1 4]] N 151
6-5. Producing ASSEmMDIY-TimMeE MESSA0ES .. uuuiiuuteiiiiietiiittet it st rsanrsssaianreasanrsssaannssasannnsss 151
6-6. FOrmMatting the LiStNg . .uuuuueieiiieiiiri i e et e e e s s s s e r e e 151
8-1. BasSiC OPLIONS SUMIMAIY 1 1uuttuuterusetsusssansrase s ssse s ssss st tase s tast s sansrasetaressinnsannes 163
8-2. File Search Path OptioNS SUMIMAIYuueiisteeiiitesriir s ssiiar e ssaies s ssase s saaaressaannesiaannnesss 163
8-3. Command File Preprocessing OptioNS SUMIMAIY ..uuuueeiuueirueernsirnsesinriassrassianesassiasssinssannssins 163
8-4. DiagnOoStiC OPLIONS SUMIMAIY .. .etinnneteirateeraaneesaaaanesaaannessaannesaaantessaannessaansnessannnesssnnnnsssns 163
8-5. Linker OUtPUL OPtiONS SUMMIBIY .t tuuuutetrateesssressaanesssisnsssaaansssaassestsassssssasstessaasnnssssnnnsssas 164
8-6. Symbol Management OPtioNS SUMIMEAIY «..uuuustruusriunerne it sase s ransssiessanrsanns 164
8-7. Run-Time Environment OPtioNS SUMIMAIYeeiiueeeiaianesiaaaneessansessaansessaaantesaaannessaannssssannnsss 164
8-8. Link-Time Optimization OPtioNS SUMMIAIY 1..uueeiiuueeisisnessaissssssanstessaasssssaannressaasnssssannssssssnnss 164
8-9. Miscellaneous OPLiONS SUMIMEAIY .. .uuuueiueerarrrsssrss et ssssaassrass et asanstaesainssanns 165
8-10. Predefined PRU MaCIOo NAMESueiueiiitirseiatisssiassssas st sss s saas s sassaan s aasesannsanses 169
8-11. Groups of Operators Used in EXPressions (PreCedENCE) v.uuuuiiviiueriiiinneiiiiieeisiisiesisasssisannnessannnes 210
10-1. Symbol Attributes in Cross-Reference LIStNG ...vvueerieeiiiiiieiie s sannseaees 246
12-1. Basic Hex Conversion ULty OPtIONSueeeiiiieiiiiieeiraieessaaae s raaaae s s sann e s saann s s saannnesaannnesanns 256
12-2. Options for Specifying Hex ConVersion FOMIALSuuuiueeiriineeeiiiiaeeissinsssisisssisasnessannsssisannnsssas 273
A-1. Symbolic DebUgQing Dir€CHVES .. uuu ettt ittt e e s s s s s e sar s saaeaanesannaans 288

SPRUHV6C-July 2014—-Revised July 2018 List of Tables 9

Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

Preface
I -{IE)S(’?SUMENTS SPRUHV6C—July 2014—Revised July 2018

Read This First

About This Manual
The PRU Assembly Language Tools User's Guide explains how to use the following Texas Instruments
Code Generation object file tools:
» Assembler
* Archiver
e Linker
e Library information archiver
* Absolute lister
» Cross-reference lister
» Disassembler
* Object file display utility
* Name utility
e Strip utility
» Hex conversion utility

How to Use This Manual

This book helps you learn how to use the Texas Instruments object file and assembly language tools
designed specifically for the PRU 32-bit devices. This book consists of four parts:

* Introductory information, consisting of Chapter 1 through Chapter 3, gives you an overview of the
object file and assembly language development tools. Chapter 2, in particular, explains object modules
and how they can be managed to help your PRU application load and run. It is highly recommended
that developers become familiar with what object modules are and how they are used before using the
assembler and linker.

» Assembler description, consisting of Chapter 4 through Chapter 6, contains detailed information
about using the assembler. Chapter 4 and Chapter 5 explain how to invoke the assembler and discuss
source statement format, valid constants and expressions, assembler output, and assembler directives.
Chapter 6 focuses on the macro language.

« Linker and other object file tools description, consisting of Chapter 7 through Chapter 12,
describes in detail each of the tools provided with the assembler to help you create executable object
files. Chapter 7 provides details about using the archiver to create object libraries. Chapter 8 explains
how to invoke the linker, how the linker operates, and how to use linker directives. Chapter 11 provides
a brief overview of some of the object file utilities that can be useful in examining the content of object
files as well as removing symbol and debug information to reduce the size of a given object file.
Chapter 12 explains how to use the hex conversion utility.

» Additional Reference material, consisting of Appendix A through Appendix D, provides
supplementary information including symbolic debugging directives used by the PRU C/C++ compiler.
It also provides hex utility examples. A description of the XML link information file and a glossary are
also provided.

10 Read This First SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com

Notational Conventions

Notational Conventions

This document uses the following conventions:
» Program listings, program examples, and interactive displays are shown in a special typeface.

Interactive displays use a bold version of the special typeface to distinguish commands that you enter

from items that the system displays (such as prompts, command output, error messages, etc.).

Here is a sample of C code:
#include <stdio.h>

main()
{ printf("hello world\n");
b

* In syntax descriptions, the instruction, command, or directive is in a bold typeface and parameters are

in an italic typeface. Portions of a syntax that are in bold should be entered as shown; portions of a

syntax that are in italics describe the type of information that should be entered.

e Square brackets ([and]) identify an optional parameter. If you use an optional parameter, you specify
the information within the brackets. Unless the square brackets are in the bold typeface, do not enter

the brackets themselves. The following is an example of a command that has an optional parameter:

‘clpru [options] [filenames] [--run_linker [link_options] [object files]]

» Braces ({and}) indicate that you must choose one of the parameters within the braces; you do not

enter the braces themselves. This is an example of a command with braces that are not included in the
actual syntax but indicate that you must specify either the --rom_maodel or --ram_model option:

--library= libraryname

clpru --run_linker {--rom_model | --ram_model} filenames [--output_file= name.out]

* In assembler syntax statements, The leftmost character position, column 1, is reserved for the first

character of a label or symbol. If the label or symbol is optional, it is usually not shown. If it is a
required parameter, it is shown starting against the left margin of the box, as in the example below. No

instruction, command, directive, or parameter, other than a symbol or label, can begin in column 1.

‘symbol .usect "section name", size in bytes|, alignment]

» Some directives can have a varying number of parameters. For example, the .byte directive can have

multiple parameters. This syntax is shown as [, ..., parameter].

‘.byte parameter,[, ... , parameter,]

» Other symbols and abbreviations used throughout this document include the following:

Symbol

Definition

B,b
H, h
LSB
MSB
0x
Q.q

Suffix — binary integer

Suffix — hexadecimal integer
Least significant bit

Most significant bit

Prefix — hexadecimal integer
Suffix — octal integer

SPRUHV6C-July 2014—-Revised July 2018
Submit Documentation Feedback

Read This First

Copyright © 2014-2018, Texas Instruments Incorporated

11

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Related Documentation From Texas Instruments www.ti.com

Related Documentation From Texas Instruments

See the following resources for further information about the Tl Code Generation Tools:
* Texas Instruments Wiki: Compiler topics
e Texas Instruments E2E Community: Compiler forum

You can use the following books to supplement this user's guide:

SPRUHV7 —PRU Optimizing C/C++ Compiler User's Guide. Describes the PRU C/C++ compiler. This
C/C++ compiler accepts ANSI standard C/C++ source code and produces assembly language
source code for the PRU device.

Texas Instruments Wiki —Programmable Realtime Unit Software Development. Provides information
about software development for the PRU device and Programmable Realtime Unit SubSystem
(PRUSS).
Trademarks
All trademarks are the property of their respective owners.

12 Read This First SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C
http://processors.wiki.ti.com/index.php/Category:Compiler
http://e2e.ti.com/support/development_tools/compiler/f/343
http://www.ti.com/lit/pdf/spruhv7
http://processors.wiki.ti.com/index.php/Programmable_Realtime_Unit_Software_Development

1 Chapter 1
I TEXAS SPRUHV6C-July 2014—Revised July 2018

INSTRUMENTS

Introduction to the Software Development Tools

The PRU is supported by a set of software development tools, which includes an optimizing C/C++
compiler, an assembler, a linker, and assorted utilities. This chapter provides an overview of these tools.

The PRU is supported by the following assembly language development tools:

» Assembler

e Archiver

* Linker

» Library information archiver

» Absolute lister

» Cross-reference lister

» Obiject file display utility

» Disassembler

* Name utility

o Strip utility

» Hex conversion utility

This chapter shows how these tools fit into the general software tools development flow and gives a brief
description of each tool. For convenience, it also summarizes the C/C++ compiler and debugging tools.

For detailed information on the compiler and debugger, and for complete descriptions of the PRU, refer to
the books listed in Related Documentation From Texas Instruments.

Topic Page

1.1 Software Development TOOIS OVEIVIEWcuue et atieiaieeaeae e aeeaeaeraanaeaeeaenes 14

O o Yo F R L= YT od 1 o) 10 o 1= PP 15
SPRUHV6C-July 2014—-Revised July 2018 Introduction to the Software Development Tools 13

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Software Development Tools Overview www.ti.com

1.1 Software Development Tools Overview

Figure 1-1 shows the PRU software development flow. The shaded portion highlights the most common
development path; the other portions are optional. The other portions are peripheral functions that
enhance the development process.

Figure 1-1. PRU Software Development Flow

C/C++
source
files
I_I
Macro
source C/C++
files compiler

Assembler C/C++ name

source

demangling
utility

Macro

library Assembler

Object Librar‘y. -build Debugging
utility

files

-
ol Run-time-
Librgry of support
object library
files

Executable
object file

Hex-conversion

utility

EPROM
programmer lister

Cross-reference

Object file

Absolute lister ayags
utilities

14 Introduction to the Software Development Tools SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Tools Descriptions

1.2 Tools Descriptions

The following list describes the tools that are shown in Figure 1-1:

» The C/C++ compiler accepts C/C++ source code and produces PRU machine code object modules.
See the PRU Optimizing C/C++ Compiler User's Guide for more information. A shell program, an
optimizer, and an interlist utility are included in the installation:

— The shell program enables you to compile, assemble, and link source modules in one step.
— The optimizer modifies code to improve the efficiency of C/C++ programs.

— The interlist utility interlists C/C++ source statements with assembly language output to correlate
code produced by the compiler with your source code.

« The assembler translates assembly language source files into machine language object modules.
Source files can contain instructions, assembler directives, and macro directives. You can use
assembler directives to control the assembly process, including the source listing format, data
alignment, and section content. See Chapter 4 through Chapter 6.

» The linker combines object files into a single object module. It performs symbolic relocation and
resolves external references. The linker accepts relocatable object modules (created by the assembler)
as input. It also accepts archiver library members and output modules created by a previous linker run.
Link directives allow you to combine object file sections, bind sections or symbols to addresses or
within memory ranges, and define global symbols. See Chapter 8.

» The archiver allows you to collect a group of files into a single archive file, called a library. The most
common use of the archiver is to collect a group of object files into an object library. The linker extracts
object library members to resolve external references during the link. You can also use the archiver to
collect several macros into a macro library. The assembler searches the library and uses the members
that are called as macros by the source file. The archiver allows you to modify a library by deleting,
replacing, extracting, or adding members. See Section 7.1.

» The library information archiver allows you to create an index library of several object file library
variants, which is useful when several variants of a library with different options are available. Rather
than refer to a specific library, you can link against the index library, and the linker will choose the best
match from the indexed libraries. See Section 7.5 for more information about using the archiver to
manage the content of a library.

* You can use the library-build utility to build your own customized run-time-support library. See the
PRU Optimizing C/C++ Compiler User's Guide for more information.

» The hex conversion utility converts object files to TI-Tagged, ASCII-Hex, Intel, Motorola-S, or
Tektronix object format. Converted files can be downloaded to an EPROM programmer. See
Chapter 12.

» The absolute lister uses linked object files to create .abs files. These files can be assembled to
produce a listing of the absolute addresses of object code. See Chapter 9.

» The cross-reference lister uses object files to produce a cross-reference listing showing symbols,
their definition, and their references in the linked source files. See Chapter 10.

» The main product of this development process is a executable object file that can be executed on a
PRU device. You can use one of several debugging tools to refine and correct your code. Available
products include:

— An XDS emulator

In addition, the following utilities are provided to help examine or manage the content of a given object file:

» The object file display utility prints the contents of object files and object libraries in either human
readable or XML formats. See Section 11.1.

» The disassembler decodes the machine code from object modules to show the assembly instructions
that it represents. See Section 11.2.

» The name utility prints a list of symbol names for objects and functions defined or referenced in an
object file or object archive. See Section 11.3.

e The strip utility removes symbol table and debugging information from object files and object libraries.
See Section 11.4.

SPRUHV6C-July 2014—-Revised July 2018 Introduction to the Software Development Tools 15

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

1 Chapter 2
I TEXAS SPRUHV6C-July 2014—Revised July 2018

INSTRUMENTS

Introduction to Object Modules

The assembler creates object modules from assembly code, and the linker creates executable object files
from object modules. These executable object files can be executed by a PRU device.

Object modules make modular programming easier because they encourage you to think in terms of
blocks of code and data when you write an assembly language program. These blocks are known as
sections. Both the assembler and the linker provide directives that allow you to create and manipulate
sections.

This chapter focuses on the concept and use of sections in assembly language programs.

Topic Page
2.1 Object File Format SPeCIfiCatioNiuiuiiiieitiii i ae e aaaas 17
2.2 Executable ODJECT FilES ..uiuiuiiiiiiiiii ettt ettt e et e e nes 17
P22 T | 9 o Yo [V Foa o i I (o TS Y= o3 1 0 1 - 17
2.4 How the Assembler Handles SECLIONS ...uiiiiiiiiiiiii i eeae s 18
2.5 How the Linker Handles SECHIONSuiuiitiiiii ittt e e e ees 23
200G TV 111 o Lo K P 25
Y22 A S Y/ 111 o o L Toal == o o= 1[0 1 1= PP 27
22 T o Y- Vo [T T = W o 0o | > 1 o O PP 27
16 Introduction to Object Modules SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

I3 TEXAS

INSTRUMENTS

www.ti.com Object File Format Specification

2.1 Object File Format Specification
The object files created by the assembler and linker conform to the ELF (Executable and Linking Format)
binary format. The ELF object files generated by the assembler and linker conform to the December 17,
2003 snapshot of the System V generic ABI (or gABI). This specification is currently maintained by SCO.

2.2 Executable Object Files
The linker produces executable object modules. An executable object module has the same format as
object files that are used as linker input. The sections in an executable object module, however, have
been combined and placed in target memory, and the relocations are all resolved.
To run a program, the data in the executable object module must be transferred, or loaded, into target
system memory. See Chapter 3 for details about loading and running programs.

2.3 Introduction to Sections

The smallest unit of an object file is a section. A section is a block of code or data that occupies
contiguous space in the memory map. Each section of an object file is separate and distinct.

ELF format executable object files contain segments. An ELF segment is a meta-section. It represents a
contiguous region of target memory. It is a collection of sections that have the same property, such as
writeable or readable. An ELF loader needs the segment information, but does not need the section
information. The ELF standard allows the linker to omit ELF section information entirely from the
executable object file.

Object files usually contain three default sections:

.text section Contains executable code @
.data section Usually contains initialized data
.bss section Usually reserves space for uninitialized variables

The assembler and linker allow you to create, name, and link other kinds of sections. The .text, .data, and
.bss sections are archetypes for how sections are handled.

There are two basic types of sections:

Initialized sections Contain data or code. The .text and .data sections are initialized; user-
named sections created with the .sect assembler directive are also
initialized.

Uninitialized sections Reserve space in the memory map for uninitialized data. The .bss section is

uninitialized; user-named sections created with the .usect assembler
directive are also uninitialized.

Several assembler directives allow you to associate various portions of code and data with the appropriate
sections. The assembler builds these sections during the assembly process, creating an object file
organized as shown in Figure 2-1.

One of the linker's functions is to relocate sections into the target system's memory map; this function is
called placement. Because most systems contain several types of memory, using sections can help you
use target memory more efficiently. All sections are independently relocatable; you can place any section
into any allocated block of target memory. For example, you can define a section that contains an
initialization routine and then allocate the routine in a portion of the memory map that contains ROM. For
information on section placement, see the "Specifying Where to Allocate Sections in Memory" section of
the PRU Optimizing C/C++ Compiler User's Guide.

@ Some targets allow content other than text, such as constants, in .text sections.

SPRUHV6C-July 2014—-Revised July 2018 Introduction to Object Modules 17
Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C
http://sco.com/developers/gabi/

13 TEXAS
INSTRUMENTS

Introduction to Sections www.ti.com

Figure 2-1 shows the relationship between sections in an object file and a hypothetical target memory.

Figure 2-1. Partitioning Memory Into Logical Blocks

Object file Target memory
.bss RAM
.data EEPROM
text T T
ROM

2.3.1 Special Section Names

24

You can use the .sect and .usect directives to create any section name you like, but certain sections are
treated in a special manner by the linker and the compiler's run-time support library. If you create a section
with the same name as a special section, you should take care to follow the rules for that special section.
A few common special sections are:

e .text -- Used for program code.

» .bss -- Used for uninitialized objects (global variables).

» .data -- Used for initialized non-const objects (global variables).

» .const -- Used for initialized const objects (string constants, variables declared const).

» .cinit -- Used to initialize C global variables at startup.

» .stack -- Used for the function call stack.

e .sysmem - Used for the dynamic memory allocation pool.

For more information on sections, see the "Specifying Where to Allocate Sections in Memory" section of
the PRU Optimizing C/C++ Compiler User's Guide.

How the Assembler Handles Sections

The assembler identifies the portions of an assembly language program that belong in a given section.
The assembler has the following directives that support this function:

e .bss

» .data

e .sect

o .text

e .usect

The .bss and .usect directives create uninitialized sections; the .text, .data, and .sect directives create
initialized sections.

You can create subsections of any section to give you tighter control of the memory map. Subsections are
created using the .sect and .usect directives. Subsections are identified with the base section name and a
subsection name separated by a colon; see Section 2.4.6.

Default Sections Directive

NOTE: If you do not use any of the sections directives, the assembler assembles everything into the
.text section.

18

Introduction to Object Modules SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com How the Assembler Handles Sections

241

24.2

Uninitialized Sections

Uninitialized sections reserve space in PRU memory; they are usually placed in RAM. These sections
have no actual contents in the object file; they simply reserve memory. A program can use this space at
run time for creating and storing variables.

Uninitialized data areas are built by using the following assembler directives.

e The .bss directive reserves space in the .bss section.

» The .usect directive reserves space in a specific uninitialized user-named section.

Each time you invoke the .bss or .usect directive, the assembler reserves additional space in the .bss or
the user-named section. The syntax is:

.bss symbol, size in bytes|, alignment [, bank offset]]
symbol .usect "section name", size in bytes|, alignment[, bank offset]]

symbol points to the first byte reserved by this invocation of the .bss or .usect directive. The
symbol corresponds to the name of the variable that you are reserving space for. It can
be referenced by any other section and can also be declared as a global symbol (with
the .global directive).

size in bytes is an absolute expression (see Section 4.8). The .bss directive reserves size in bytes
bytes in the .bss section. The .usect directive reserves size in bytes bytes in section
name. For both directives, you must specify a size; there is no default value.

alignment is an optional parameter. It specifies the minimum alignment in bytes required by the
space allocated. The default value is byte aligned; this option is represented by the
value 1. The value must be a power of 2.

bank offset is an optional parameter. It ensures that the space allocated to the symbol occurs on a
specific memory bank boundary. The bank offset measures the number of bytes to
offset from the alignment specified before assigning the symbol to that location.

section name specifies the user-named section in which to reserve space. See Section 2.4.3.

Initialized section directives (.text, .data, and .sect) change which section is considered the current section
(see Section 2.4.2). However, the .bss and .usect directives do not change the current section; they simply
escape from the current section temporarily. Immediately after a .bss or .usect directive, the assembler
resumes assembling into whatever the current section was before the directive. The .bss and .usect
directives can appear anywhere in an initialized section without affecting its contents.

The .usect directive can also be used to create uninitialized subsections. See Section 2.4.6 for more
information on creating subsections.

Initialized Sections

Initialized sections contain executable code or initialized data. The contents of these sections are stored in
the object file and placed in PRU memory when the program is loaded. Each initialized section is
independently relocatable and may reference symbols that are defined in other sections. The linker
automatically resolves these references. The following directives tell the assembler to place code or data
into a section. The syntaxes for these directives are:

text
.data
.sect "section name"

The .sect directive can also be used to create initialized subsections. See Section 2.4.6, for more
information on creating subsections.

SPRUHV6C-July 2014—-Revised July 2018 Introduction to Object Modules 19
Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

How the Assembler Handles Sections www.ti.com

24.3

244

245

User-Named Sections

User-named sections are sections that you create. You can use them like the default .text, .data, and .bss
sections, but each section with a distinct name is kept distinct during assembly.

For example, repeated use of the .text directive builds up a single .text section in the object file. This .text
section is allocated in memory as a single unit. Suppose there is a portion of executable code (perhaps an
initialization routine) that you want the linker to place in a different location than the rest of .text. If you
assemble this segment of code into a user-named section, it is assembled separately from .text, and you
can use the linker to allocate it into memory separately. You can also assemble initialized data that is
separate from the .data section, and you can reserve space for uninitialized variables that is separate from
the .bss section.

These directives let you create user-named sections:

» The .usect directive creates uninitialized sections that are used like the .bss section. These sections
reserve space in RAM for variables.

* The .sect directive creates initialized sections, like the default .text and .data sections, that can contain
code or data. The .sect directive creates user-named sections with relocatable addresses.

The syntaxes for these directives are:

symbol .usect "section name", size in bytes|, alignment[, bank offset]]
.sect "section name"

The maximum number of sections is 2%%-1 (4294967295).

The section name parameter is the name of the section. For the .usect and .sect directives, a section
name can refer to a subsection; see Section 2.4.6 for details.

Each time you invoke one of these directives with a new name, you create a new user-named section.
Each time you invoke one of these directives with a name that was already used, the assembler resumes
assembling code or data (or reserves space) into the section with that name. You cannot use the same
names with different directives. That is, you cannot create a section with the .usect directive and then try
to use the same section with .sect.

Current Section

The assembler adds code or data to one section at a time. The section the assembler is currently filling is
the current section. The .text, .data, and .sect directives change which section is considered the current
section. When the assembler encounters one of these directives, it stops assembling into the current
section (acting as an implied end of current section command). The assembler sets the designated
section as the current section and assembles subsequent code into the designated section until it
encounters another .text, .data, or .sect directive.

If one of these directives sets the current section to a section that already has code or data in it from
earlier in the file, the assembler resumes adding to the end of that section. The assembler generates only
one contiguous section for each given section name. This section is formed by concatenating all of the
code or data which was placed in that section.

Section Program Counters

The assembler maintains a separate program counter for each section. These program counters are
known as section program counters, or SPCs.

An SPC represents the current address within a section of code or data. Initially, the assembler sets each
SPC to 0. As the assembler fills a section with code or data, it increments the appropriate SPC. If you
resume assembling into a section, the assembler remembers the appropriate SPC's previous value and
continues incrementing the SPC from that value.

The assembler treats each section as if it began at address 0; the linker relocates the symbols in each
section according to the final address of the section in which that symbol is defined. See Section 2.7 for
information on relocation.

20

Introduction to Object Modules SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

I

WWW.1i

TEXAS
INSTRUMENTS

i.com How the Assembler Handles Sections

2.4.6

Subsections

A subsection is created by creating a section with a colon in its name. Subsections are logical subdivisions
of larger sections. Subsections are themselves sections and can be manipulated by the assembler and
linker.

The assembler has no concept of subsections; to the assembler, the colon in the name is not special. The
subsection .text:rts would be considered completely unrelated to its parent section .text, and the
assembler will not combine subsections with their parent sections.

Subsections are used to keep parts of a section as distinct sections so that they can be separately
manipulated. For instance, by placing each function and object in a uniquely-named subsection, the linker
gets a finer-grained view of the section for memory placement and unused-function elimination.

By default, when the linker sees a SECTION directive in the linker command file like ".text", it will gather
.text and all subsections of .text into one large output section named ".text". You can instead use the
SECTION directive to control the subsection independently. See Section 8.5.5.1 for an example.

You can create subsections in the same way you create other user-named sections: by using the .sect or
.usect directive.

The syntaxes for a subsection name are:

symbol .usect "section_name:subsection_name",size in bytes|, alignment|[, bank offset]]
.sect "section_name:subsection_name"

A subsection is identified by the base section name followed by a colon and the name of the subsection.
The subsection name may not contain any spaces.

A subsection can be allocated separately or grouped with other sections using the same base name. For
example, you create a subsection called _func within the .text section:

.sect "_text:_func"

Using the linker's SECTIONS directive, you can allocate .text:_func separately, or with all the .text
sections.

You can create two types of subsections:
» Initialized subsections are created using the .sect directive. See Section 2.4.2.
» Uninitialized subsections are created using the .usect directive. See Section 2.4.1.

Subsections are placed in the same manner as sections. See Section 8.5.5 for information on the
SECTIONS directive.

2.4.7 Using Sections Directives
Figure 2-2 shows how you can build sections incrementally, using the sections directives to swap back
and forth between the different sections. You can use sections directives to begin assembling into a
section for the first time, or to continue assembling into a section that already contains code. In the latter
case, the assembler simply appends the new code to the code that is already in the section.
The format in Figure 2-2 is a listing file. Figure 2-2 shows how the SPCs are modified during assembly. A
line in a listing file has four fields:
Field 1 contains the source code line counter.
Field 2 contains the section program counter.
Field 3 contains the object code.
Field 4 contains the original source statement.
See Section 4.10 for more information on interpreting the fields in a source listing.

SPRUHV6C-July 2014—-Revised July 2018 Introduction to Object Modules 21

Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

How the Assembler Handles Sections

13 TEXAS
INSTRUMENTS

www.ti.com

Figure 2-2. Using Sections Directives Example

l ; v e b b e v wbe wbe he he whe o b b e e be b e e e e e ke e e e e e e e e e e b e Wb e e e b e e e ke ke ke e
2 ;** Lzsemble an initialized takle into .data. *¥*
3 ; v e b e e v wbe Wb he he whe o b b e e ke b e b e e e Wb b e e e e e e e e e e Wb Wb e e e b e e e ke ke ke e
4 Q0000000 .data
S 00000000 0000000000001l coeff .word 011lh, 022h, 033h
Qo000004 Q0000000000022
QgooQoO0O00E OQOOQOOOQOOOO00DD33
&
'_l|| ; v e b e e v wbe Wb he he whe o b b e e ke b e b e e e Wb b e e e e e e e e e e Wb Wb e e e b e e e ke ke ke e
8 ;%% Reserve space in .bss for a wvariable. e
9 ; v e b e e v wbe Wb he he whe o b b e e ke b e b e e e Wb b e e e e e e e e e e Wb Wb e e e b e e e ke ke ke e
10 00000000 .b== buffer, 10
ll ; v e b e e v wbe Wb he he whe o b b e e ke b e b e e e Wb b e e e e e e e e e e Wb Wb e e e b e e e ke ke ke e
1z ;** 8till in .data. ke
13 ; v e b e e v wbe Wb he he whe o b b e e ke b e b e e e Wb b e e e e e e e e e e Wb Wb e e e b e e e ke ke ke e
14 0000000c 0QO0OCOOO00QOO0123 ptr .word 0123h
15 ; v e b e e v wbe Wb he he whe o b b e e ke b e b e e e Wb b e e e e e e e e e e Wb Wb e e e b e e e ke ke ke e
16 ;*%* Lszsemble code into the .text section. ke
18 00000000 .text
1% 00000000 0000002404DZEL LDI rl, 1234
20 00000004 OQOOOOOO501ELEL | 111] SUB rl, rl, 1
21 00000008 000000GFOOELFF QBNE 11, r1, ©
22 ; v e b e e v wbe Wb he he whe o b b e e ke b e b e e e Wb b e e e e e e e e e e Wb Wb e e e b e e e ke ke ke e
23 ;** Bnother initialized takle into .data ke
25 00000010 .data
26 00000010 OQOOOOQOOOO0O0RZ iwvals .word 0&azh, 0BBh, 0CCh
Q0000014 OOOOOOOOOOO0O0OEBE
Q0000018 0O00OOO0OOQOO00CC
2'? ; v e b e e v wbe Wb he he whe o b b e e ke b e b e e e Wb b e e e e e e e e e e Wb Wb e e e b e e e ke ke ke e
28 ;** Define another section for more wvariables. %
30 00000000 varz .uzect "newvars", 1
31 00000001 inbuf .uzect "newvars", 7
32 ; v e b e e v wbe Wb he he whe o b b e e ke b e b e e e Wb b e e e e e e e e e e Wb Wb e e e b e e e ke ke ke e
33 ;** Lzsemble more code into the .text section. *¥*
35 0000000c .text
36 0000000c OQOOOOOZ40DBOEZ LDT r3, 32456
37 00000010 CQOOOOQOOS01E3EZ2 aloop: SUB r3, r3, 1
38 00000014 OQO0O0O00OGFOOE3FF QBNE aloop, r3, 0
35
40
B Y % %
Field1 Field 2 Field 3 Field 4
22 Introduction to Object Modules SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com

How the Linker Handles Sections

As Figure 2-3 shows, the file in Figure 2-2 creates the following sections:

text contains six 32-bit words of object code.

.data contains seven words of initialized data.

.bss reserves ten bytes in memory.

newvars is a user-named section created with the .usect directive; it reserves eight bytes in
memory.

The second column shows the object code that is assembled into these sections; the first column shows
the source statements that generated the object code.

Figure 2-3. Object Code Generated by the File in Figure 2-2

Line numbers

19
20
21
36
37
38

5
5
5
14
26
26
26

10

30
31

2.5 How the Linker Handles Sections

Object code

2404D2E1
0501E1E1
6F00E1FF
240D80E3
0501E3E3
6F 00E3FF

00000011

00000022
00000033
00000123
000000AA
0oooooBB
000000CC

Mo data -
ten bytes
reserved

Mo data -
eight bytes
reserved

Section

dext

.data

.bss

newvars

The linker has two main functions related to sections. First, the linker uses the sections in object files as
building blocks; it combines input sections to create output sections in an executable output module.
Second, the linker chooses memory addresses for the output sections; this is called placement. Two linker

directives support these functions:

 The MEMORY directive allows you to define the memory map of a target system. You can name
portions of memory and specify their starting addresses and their lengths.

» The SECTIONS directive tells the linker how to combine input sections into output sections and where
to place these output sections in memory.

Subsections let you manipulate the placement of sections with greater precision. You can specify the
location of each subsection with the linker's SECTIONS directive. If you do not specify a subsection, the
subsection is combined with the other sections with the same base section nhame. See Section 8.5.5.1.

SPRUHV6C-July 2014—-Revised July 2018
Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

Introduction to Object Modules

23

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

How the Linker Handles Sections www.ti.com

It is not always necessary to use linker directives. If you do not use them, the linker uses the target
processor's default placement algorithm described in Section 8.7. When you do use linker directives, you
must specify them in a linker command file.

Refer to the following sections for more information about linker command files and linker directives:
e Section 8.5, Linker Command Files

» Section 8.5.4, The MEMORY Directive

» Section 8.5.5, The SECTIONS Directive

» Section 8.7, Default Placement Algorithm

2.5.1 Combining Input Sections
Figure 2-4 provides a simplified example of the process of linking two files together.
Note that this is a simplified example, so it does not show all the sections that will be created or the actual
sequence of the sections. See Section 8.7 for the actual default memory placement map for PRU.
Figure 2-4. Combining Input Sections to Form an Executable Object Module
file1.0bj
Executable
bss object module Memory map
file1
text
Space for
4'\,7777(13587)*7*— vgriables
data file2 (.bss)
’ (.bss)
Init - file1 -
(named section) — [5 (.data) Imgaltlzed
A0 Y- __] ata
d file2 (.data)
(.data)
file1
file2.obj N (.text) Executable
| S B code
file2 (.text)
.bss (text)
text) Init Init
.data) Tables Tables
Tables
(named section)
In Figure 2-4, filel.obj and file2.obj have been assembled to be used as linker input. Each contains the
.text, .data, and .bss default sections; in addition, each contains a user-named section. The executable
object module shows the combined sections. The linker combines the .text section from filel.obj and the
.text section from file2.obj to form one .text section, then combines the two .data sections and the two .bss
sections, and finally places the user-named sections at the end. The memory map shows the combined
sections to be placed into memory.
24 Introduction to Object Modules SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

I

TEXAS

INSTRUMENTS

www.ti.com How the Linker Handles Sections

25.2

2.6

26.1

Placing Sections

Figure 2-4 illustrates the linker's default method for combining sections. Sometimes you may not want to
use the default setup. For example, you may not want all of the .text sections to be combined into a single
.text section. Or you may want a user-named section placed where the .data section would normally be
allocated. Most memory maps contain various types of memory (RAM, ROM, EPROM, FLASH, etc.) in
varying amounts; you may want to place a section in a specific type of memory.

For further explanation of section placement within the memory map, see the discussions in Section 8.5.4
and Section 8.5.5. See Section 8.7 for the actual default memory allocation map for PRU.

Symbols

An object file contains a symbol table that stores information about external symbols in the object file. The
linker uses this table when it performs relocation. See Section 2.7.

An object file symbol is a named 32-bit integer value, usually representing an address. A symbol can
represent such things as the starting address of a function, variable, or section.

An object file symbol can also represent an absolute integer, such as the size of the stack. To the linker,
this integer is an unsigned value, but the integer may be treated as signed or unsigned depending on how
it is used. The range of legal values for an absolute integer is 0 to 2*32-1 for unsigned treatment and
-2"\31 to 2"31-1 for signed treatment.

Symbols can be bound as global symbols, local symbols, or weak symbols. The linker handles symbols
differently based on their binding. For example, the linker does not allow multiple global definitions of a
symbol, but local symbols can be defined in multiple object files (but only once per object file). The linker
does not resolve references to local symbols in different object files, but it does resolve references to
global symbols in any other object file.

A global symbol is defined in the same manner as any other symbol; that is, it appears as a label or is
defined by a directive, such as .set, .equ, .bss, or .usect. If a global symbol is defined more than once, the
linker issues a multiple-definition error. (The assembler can provide a similar multiple-definition error for
local symbols.)

A weak symbol is a symbol that is used in the current module but is defined in another module. The linker
resolves this symbol's definition at link time. Weak symbols are similar to global symbols, except that if
one object file contains a weak symbol, and another object file contains a global symbol with the same
name, the global symbol is used to resolve references. A weak reference may be unresolved at link time,
in which case the address is treated as 0. Therefore, for weak references, application code must test to
make sure &var is not zero before attempting to read the contents. See Section 2.6.2 for more about weak
symbols.

In general, common symbols (see .common directive) are preferred over weak symbols.
See Section 4.7 for information about assembler symbols.

External Symbols

External symbols are symbols that are visible to other object modules. Because they are visible across
object modules, they may be defined in one file and referenced in another file. You can use the .def, .ref,
or .global directive to identify a symbol as external:

.def The symbol is defined in the current file and may be used in another file.
ref The symbol is referenced in the current file, but defined in another file.

.global The symbol can be either of the above. The assembler chooses either .def or .ref as
appropriate for each symbol.

The following code fragments illustrate the use of the .global directive.
X: .word y

.global x ; acts as .def of x
.global y ; acts as .ref of y

SPRUHV6C-July 2014—-Revised July 2018 Introduction to Object Modules 25
Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Symbols www.ti.com

2.6.2

Because x is defined in this module, the assembler treats ".global x" as ".def x", and other modules can
refer to x. Because y is not defined in this module, the assembler treats ".global y" as ".ref y". The symbol
y must be defined in another module.

Both the symbols x and y are external symbols and are placed in the object file's symbol table; x as a
defined symbol, and y as an undefined symbol. When the object file is linked with other object files, the
entry for x will be used to resolve references to x in other files. The entry for y causes the linker to look
through the symbol tables of other files for y’s definition.

The linker attempts to match all references with corresponding definitions. If the linker cannot find a
symbol's definition, it prints an error message about the unresolved reference. This type of error prevents
the linker from creating an executable object module.

An error also occurs if the same symbol is defined more than once.

Weak Symbols

The linker processes absolute symbols that are defined with "weak" binding differently from absolute
symbols that are defined with global binding (the default). Instead of including a weak absolute symbol in
the output file's symbol table by default (as it would for a global absolute symbol), the linker only includes
a weak absolute symbol in the output of a "final" link if the symbol is required to resolve an otherwise
unresolved reference.

This weak symbol handling allows you to associate addresses with symbols known to have been pre-
loaded (such as function addresses in system memory) and then link the current application against a pre-
loaded memory image. If such symbols are defined as weak absolute symbols, the linker can minimize the
number of symbols it includes in the output file's symbol table by omitting those that are not needed to
resolve references. Reducing the size of the output file's symbol table reduces the time required to link,
especially if there are a large number of pre-loaded symbols to link against. This feature is particularly
helpful for OpenCL applications.

You can define a weak absolute symbol using either assembly or the linker command file.

Using Assembly: To define a weak absolute symbol in an input object file, the source file can be written
in assembly. Use the .weak and .set directives in combination as shown in the following example, which
defines a weak absolute symbol "ext_addr_sym":

-weak ext_addr_sym
ext_addr_sym .set 0x12345678

Assemble the source file that defines weak symbols, and include the resulting object file in the link. The
"ext_addr_sym" in this example is available as a weak absolute symbol in a final link. It is a candidate for
removal if the symbol is not referenced elsewhere in the application. See .weak directive.

Using the Linker Command File: To define a weak symbol in a linker command file, use the "weak"
operator in an assignment expression to designate that the symbol as eligible for removal from the output
file's symbol table if it is not referenced. In a linker command file, an assignment expression outside a
MEMORY or SECTIONS directive can be used to define a weak linker-defined absolute symbol. For
example, you can define "ext_addr_sym" as follows:

weak(ext_addr_sym) = 0x12345678;

If the linker command file is used to perform the final link, then "ext_addr_sym" is presented to the linker
as a weak absolute symbol; it will not be included in the resulting output file if the symbol is not
referenced. See Section 8.6.2.

If there are multiple definitions of the same absolute symbol, the linker uses certain rules to determine
which definition takes precedence. Some definitions may have weak binding and others may have strong
binding. "Strong" in this context means that the symbol has not been given a weak binding by either of the
two methods described above. Some definitions may come from an input object file (that is, using
assembly directives) and others may come from an assignment statement in a linker command file.

26

Introduction to Object Modules SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

I

TEXAS
INSTRUMENTS

www.ti.com Symbols

2.6.3

2.7

The linker uses the following guidelines to determine which definition is used when resolving references to
a symbol:

» A strongly bound symbol always takes precedence over a weakly bound symbol.

» If two symbols are both strongly bound or both weakly bound, a symbol defined in a linker command
file takes precedence over a symbol defined in an input object file.

« If two symbols are both strongly bound and both are defined in an input object file, the linker provides a
symbol redefinition error and halts the link process.

The Symbol Table

The assembler generates an entry in the symbol table for each .ref, .def, or .global directive in
Section 2.6.1). These are external symbols, which are visible to other object modules.

The assembler also creates special symbols that point to the beginning of each section.

The assembler does not usually create symbol table entries for any symbols other than those described
above, because the linker does not use them. For example, labels (Section 4.7.2) are not included in the
symbol table unless they are declared with the .global directive. For informational purposes, there are
entries in the symbol table for each symbol in a program.

Symbolic Relocations

The assembler treats each section as if it began at address 0. Of course, all sections cannot actually
begin at address 0 in memory, so the linker must relocate sections. Relocations are symbol-relative rather
than section-relative.

The linker can relocate sections by:

» Allocating them into the memory map so that they begin at the appropriate address as defined with the
linker's MEMORY directive

* Adjusting symbol values to correspond to the new section addresses
» Adjusting references to relocated symbols to reflect the adjusted symbol values

The linker uses relocation entries to adjust references to symbol values. The assembler creates a
relocation entry each time a relocatable symbol is referenced. The linker then uses these entries to patch
the references after the symbols are relocated. Example 2-1 contains a code fragment for a PRU device
for which the assembler generates relocation entries.

Example 2-1. Code That Generates Relocation Entries

1

2 *x Generating Relocation Entries *x
3

4 .ref X

5 .def Y

6 00000000 -text

7 00000000 E0921003 ADDS R1, R2, R3

8 00000004 0A000001 BEQ Y

9 00000008 E1C410BE STRH R1, [R4, #14]

10 0000000c EAFFFFFB! B X ; generates a relocation entry
11 00000010 E0821003 Y: ADD R1, R2, R3

The relocation generated for "Y' would actually refer to the symbol 'Y' and resolve the value for 'Y" in the
opcode based on where the definition of 'Y' ends up.

2.8 Loading a Program
The linker creates an executable object file which can be loaded in several ways, depending on your
execution environment. These methods include using Code Composer Studio or the hex conversion utility.
For details, see Section 3.1.

SPRUHV6C-July 2014—-Revised July 2018 Introduction to Object Modules 27

Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

Chapter 3

SPRUHV6C-July 2014—Revised July 2018

TeEXAS
INSTRUMENTS

Program Loading and Running

Even after a program is written, compiled, and linked into an executable object file, there are still many
tasks that need to be performed before the program does its job. The program must be loaded onto the
target, memory and registers must be initialized, and the program must be set to running.

Some of these tasks need to be built into the program itself. Bootstrapping is the process of a program
performing some of its own initialization. Many of the necessary tasks are handled for you by the compiler
and linker, but if you need more control over these tasks, it helps to understand how the pieces are
expected to fit together.

This chapter will introduce you to the concepts involved in program loading, initialization, and startup.
This chapter does not cover dynamic loading.

This chapter currently provides examples for the C6000 device family. Refer to your device documentation
for various device-specific aspects of bootstrapping.

Topic Page
£ 4 15 - T 1o o 29
G 0 1 20 o] 2 P 34
3.3 RUN-TIME INIIAIIZALION .eueieiiei ettt e et e e st e n e e et aeanaaes 34
G AN (o LU 4 =T] =T (o TN .1 =V 37
3.5 RUN-TIME REIOCALION .ttt ittt e e e e e et e et a e e et e e e n e e eeae e nes 37
3.6 Additional INfOrmMationeieiiiii e et 38
28 Program Loading and Running SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

I

TEXAS
INSTRUMENTS

www.ti.com Loading

3.1

3.1.1

Loading

A program needs to be placed into the target device's memory before it may be executed. Loading is the
process of preparing a program for execution by initializing device memory with the program's code and
data. A loader might be another program on the device, an external agent (for example, a debugger), or
the device might initialize itself after power-on, which is known as bootstrap loading, or bootloading.

The loader is responsible for constructing the load image in memory before the program starts. The load
image is the program's code and data in memory before execution. What exactly constitutes loading
depends on the environment, such as whether an operating system is present. This section describes
several loading schemes for bare-metal devices. This section is not exhaustive.

A program may be loaded in the following ways:

e A debugger running on a connected host workstation. In a typical embedded development setup,
the device is subordinate to a host running a debugger such as Code Composer Studio (CCS). The
device is connected with a communication channel such as a JTAG interface. CCS reads the program
and writes the load image directly to target memory through the communications interface.

* Another program running on the device. The running program can create the load image and
transfer control to the loaded program. If an operating system is present, it may have the ability to load
and run programs.

« "Burning" the load image onto an EPROM module. The hex converter (hexpru) can assist with this
by converting the executable object file into a format suitable for input to an EPROM programmer. The
EPROM is placed onto the device itself and becomes a part of the device's memory. See Chapter 12
for details.

» Bootstrap loading from a dedicated peripheral, such as an I?C peripheral. The device may require
a small program called a bootloader to perform the loading from the peripheral. The hex converter can
assist in creating a bootloader.

Load and Run Addresses

Consider an embedded device for which the program's load image is burned onto EPROM/ROM. Variable
data in the program must be writable, and so must be located in writable memory, typically RAM.
However, RAM is volatile, meaning it will lose its contents when the power goes out. If this data must have
an initial value, that initial value must be stored somewhere else in the load image, or it would be lost
when power is cycled. The initial value must be copied from the non-volatile ROM to its run-time location
in RAM before it is used. See Section 8.8 for ways this is done.

The load address is the location of an object in the load image.
The run address is the location of the object as it exists during program execution.
An object is a chunk of memory. It represents a section, segment, function, or data.

The load and run addresses for an object may be the same. This is commonly the case for program code
and read-only data, such as the .const section. In this case, the program can read the data directly from
the load address. Sections that have no initial value, such as the .bss section, do not have load data and
are considered to have load and run addresses that are the same. If you specify different load and run
addresses for an uninitialized section, the linker provides a warning and ignores the load address.

The load and run addresses for an object may be different. This is commonly the case for writable data,
such as the .data section. The .data section's starting contents are placed in ROM and copied to RAM.
This often occurs during program startup, but depending on the needs of the object, it may be deferred to
sometime later in the program as described in Section 3.5.

Symbols in assembly code and object files almost always refer to the run address. When you look at an
address in the program, you are almost always looking at the run address. The load address is rarely
used for anything but initialization.

The load and run addresses for a section are controlled by the linker command file and are recorded in
the object file metadata.

SPRUHV6C-July 2014—-Revised July 2018 Program Loading and Running 29
Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Loading www.ti.com

3.1.2

The load address determines where a loader places the raw data for the section. Any references to the
section (such as references to labels in it) refer to its run address. The application must copy the section
from its load address to its run address before the first reference of the symbol is encountered at run time;
this does not happen automatically simply because you specify a separate run address. For examples that
specify load and run addresses, see Section 8.5.6.1.

ELF format executable object files contain segments. See Section 2.3 for information about sections and
segments.

Bootstrap Loading

The details of bootstrap loading (bootloading) vary a great deal between devices. Not every device
supports every bootloading mode, and using the bootloader is optional. This section discusses various
bootloading schemes to help you understand how they work. Refer to your device's data sheet to see
which bootloading schemes are available and how to use them.

A typical embedded system uses bootloading to initialize the device. The program code and data may be
stored in ROM or FLASH memory. At power-on, an on-chip bootloader (the primary bootloader) built into
the device hardware starts automatically.

Figure 3-1. Bootloading Sequence (Simplified)

Power On

Device Reset:
on-chip bootloader

Entry point:
(_c_int00 by default)

main

The primary bootloader is typically very small and copies a limited amount of memory from a dedicated
location in ROM to a dedicated location in RAM. (Some bootloaders support copying the program from an
I/O peripheral.) After the copy is completed, it transfers control to the program.

For many programs, the primary bootloader is not capable of loading the entire program, so these
programs supply a more capable secondary bootloader. The primary bootloader loads the secondary
bootloader and transfers control to it. Then, the secondary bootloader loads the rest of the program and
transfers control to it. There can be any number of layers of bootloaders, each loading a more capable
bootloader to which it transfers control.

30

Program Loading and Running SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Loading

Figure 3-2. Bootloading Sequence with Secondary Bootloader

Power On

Device Reset:
on-chip bootloader

CPU Reset

Secondary Bootloader

Entry point:
(_c_int00 by default)

main

3.1.2.1 Boot, Load, and Run Addresses
The boot address of a bootloaded object is where its raw data exists in ROM before power-on.

The boot, load, and run addresses for an object may all be the same; this is commonly the case for .const
data. If they are different, the object's contents must be copied to the correct location before the object
may be used.

The boot address may be different than the load address. The bootloader is responsible for copying the
raw data to the load address.

The boot address is not controlled by the linker command file or recorded in the object file; it is strictly a
convention shared by the bootloader and the program.
3.1.2.2 Primary Bootloader
The detailed operation of the primary bootloader is device-specific. Some devices have complex
capabilities such as booting from an 1/O peripheral or configuring memory controller parameters.
3.1.2.3 Secondary Bootloader

The hex converter assumes the secondary bootloader is of a particular format. The hex converter's model
bootloader uses a boot table. You can use whatever format you want, but if you follow this model, the hex
converter can create the boot table automatically.

SPRUHV6C-July 2014—-Revised July 2018 Program Loading and Running 31
Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Loading www.ti.com

3.1.2.4 Boot Table

The input for the model secondary bootloader is the boot table. The boot table contains records that
instruct the secondary bootloader to copy blocks of data contained in the table to specified destination
addresses. The hex conversion utility automatically builds the boot table for the secondary bootloader.
Using the utility, you specify the sections you want to initialize, the boot table location, and the name of the
section containing the secondary bootloader routine and where it should be located. The hex conversion
utility builds a complete image of the table and adds it to the program.

The boot table is target-specific. For C6000, the format of the boot table is simple. A header record
contains a 4-byte field that indicates where the boot loader should branch after it has completed copying
data. After the header, each section that is to be included in the boot table has the following contents:

» 4-byte field containing the size of the section

e 4-byte field containing the destination address for the copy

» the raw data

» 0 to 3 bytes of trailing padding to make the next field aligned to 4 bytes

More than one section can be entered; a termination block containing an all-zero 4-byte field follows the
last section.

3.1.2.5 Bootloader Routine

The bootloader routine is a normal function, except that it executes before the C environment is set up.
For this reason, it can't use the C stack, and it can't call any functions that have yet to be loaded!

The following sample code is for C6000 and is from Creating a Second-Level Bootloader for FLASH
Bootloading on TMS320C6000 Platform With Code Composer Studio (SPRA999).

Example 3-1. Sample Secondary Bootloader Routine

; global EMIF symbols defined for the c671x family

-include boot_c671x.h62
.sect "_boot_load"
-global _boot

_boot:

;* DEBUG LOOP - COMMENT OUT B FOR NORMAL OPERATION

zero Bl
_myloop: ; [!'B1] B _myloop

nop 5

_myloopend: nop

;* CONFIGURE EMIF

: *EMIF_GCTL = EMIF_GCTL_V;

mvkl EMIF_GCTL,A4
11 mvkl EMIF_GCTL_V,B4
mvkh EMIF_GCTL,A4
11 mvkh EMIF_GCTL_V,B4
stw B4,*A4

; *EMIF_CEO = EMIF_CEO_V

mvkl EMIF_CEO,A4
11 mvkl EMIF_CEO_V,B4
mvkh EMIF_CEO,A4
11 mvkh EMIF_CEO_V,B4
stw B4,*A4

32

Program Loading and Running SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C
http://www.ti.com/lit/pdf/SPRA999

13 TEXAS

INSTRUMENTS

www.ti.com

Loading

Example 3-1. Sample Secondary Bootloader Routine (continued)

*EMIF_CE1 = EMIF_CE1_V (setup for 8-bit async)

mvkl
11 mvkl
mvkh
11 mvkh
stw

EMIF_CE1,A4
EMIF_CE1_V,B4
EMIF_CE1,A4
EMIF_CE1_V,B4
B4,*Ad

*EMIF_CE2 = EMIF_CE2_V (setup for 32-bit async)

mvkl
11 mvkl
mvkh
11 mvkh
stw

EMIF_CE2,A4
EMIF_CE2_V,B4
EMIF_CE2,A4
EMIF_CE2_V,B4
B4,*Ad

*EMIF_CE3 = EMIF_CE3_V (setup for 32-bit async)

mvkl
mvkl
mvkh
11 mvkh
stw

EMIF_CE3,A4
EMIF_CE3_V,B4 ;
EMIF_CE3,A4
EMIF_CE3_V,B4
B4,*A4

*EMIF_SDRAMCTL = EMIF_SDRAMCTL_V

11 mvkl
11 mvkl
mvkh
11 mvkh
stw

EMIF_SDRAMCTL ,A4
EMIF_SDRAMCTL_V,B4 ;
EMIF_SDRAMCTL ,A4
EMIF_SDRAMCTL_V,B4
B4,*A4

*EMIF_SDRAMTIM = EMIF_SDRAMTIM_V

11 mvkl
11 mvkl
mvkh
11 mvkh
stw

EMIF_SDRAMTIM, A4
EMIF_SDRAMTIM_V,B4 ;
EMIF_SDRAMTIM,A4
EMIF_SDRAMTIM_V,B4

B4 ,*A4

*EMIF_SDRAMEXT = EMIF_SDRAMEXT_V

mvkl
mvkl
mvkh
11 mvkh
stw

EMIF_SDRAMEXT ,A4
EMIF_SDRAMEXT_V,B4 ;
EMIF_SDRAMEXT ,A4
EMIF_SDRAMEXT_V,B4
B4,*A4

copy sections

mvkl COPY_TABLE, a3 ; load table pointer
mvkh COPY_TABLE, a3
ldw *a3++, bl ; Load entry point
copy_section_top:
ldw *a3++, b0 ; byte count
ldw *a3++, a4 ; ram start address
nop 3
[b0] b copy_done ; have we copied all sections?
nop 5
copy_loop:
Idb *a3++,b5
sub b0,1,b0 ; decrement counter
[b0] b copy_loop ; setup branch if not done

SPRUHV6C-July 2014—-Revised July 2018
Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

Program Loading and Running

33

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Entry Point www.ti.com

Example 3-1. Sample Secondary Bootloader Routine (continued)

['b0]
[1b0]

['b0]
[al]

b copy_section_top
zero al

and 3,a3,al
stb b5,*ad++
and -4,a3,a5 ; round address up to next multiple of 4
add 4,a5,a3 ; round address up to next multiple of 4

; jump to entry point

copy_done:

b .S2 bl
nop 5
3.2 Entry Point

The entry point is the address at which the execution of the program begins. This is the address of the
startup routine. The startup routine is responsible for initializing and calling the rest of the program. For a
C/C++ program, the startup routine is usually named _c_int00 (see Section 3.3.1). After the program is
loaded, the value of the entry point is placed in the PC register and the CPU is allowed to run.

The object file has an entry point field. For a C/C++ program, the linker will fill in _c_int00 by default. You
can select a custom entry point; see Section 8.4.12. The device itself cannot read the entry point field from
the object file, so it has to be encoded in the program somewhere.

» If you are using a bootloader, the boot table includes an entry point field. When it finishes running, the
bootloader branches to the entry point.

» If you are using a hosted debugger, such as CCS, the debugger may explicitly set the program counter
(PC) to the value of the entry point.

3.3 Run-Time Initialization
After the load image is in place, the program can run. The subsections that follow describe bootstrap
initialization of a C/C++ program. An assembly-only program may not need to perform all of these steps.
3.3.1 The c_int00 Function
The function _c_int00 is the startup routine (also called the boot routine) for C/C++ programs. It performs
all the steps necessary for a C/C++ program to initialize itself.
The name _c_int00 means that it is the interrupt handler for interrupt number 0, RESET, and that it sets
up the C environment. Its name need not be exactly _c_int00, but the linker sets _c_int00 as the entry
point for C programs by default. The compiler's run-time-support library provides a default implementation
of _c_int0O.
The startup routine is responsible for performing the following actions:
1. Switch to user mode and sets up the user mode stack
2. Set up status and configuration registers
3. Set up the stack and secondary system stack
4. Process special binit copy table, if present.
5. Process the run-time initialization table to autoinitialize global variables (when using the --rom_model
option)
6. Call all global constructors
7. Call the function main
8. Call exit when main returns
34 Program Loading and Running SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

www.ti.com

TEXAS
INSTRUMENTS

Run-Time Initialization

3.3.2 Variable Initialization

Initialized read-write variables are collected into dedicated section(s) of the object file, for example .data.
The section contains an image of its initial state upon program startup.

There are two models for loading such sections. In the RAM model (--ram_model), an external agent such
as a loader is responsible for getting the data from the executable file to its location in read-write memory.
This is the typical direct-initialization model used in OS-based systems or, in some instances, boot-loaded
systems.

The other model, called the ROM model (--rom_model), is intended for bare-metal embedded systems
that must be capable of cold starts without the support of an OS or other loader. Any data needed to
initialize the program must reside in persistent offline storage (ROM), and get copied into its RAM location
upon startup. The Tl tools implement this by leveraging the copy table capability. The initialization
mechanism is conceptually similar to copy tables, but differs slightly in the details.

Figure 3-3 shows the conceptual operation of variable initialization under the ROM model. In this model,
the linker removes the data from sections that contain initialized variables. The sections become
uninitialized sections, allocated into RAM at their run-time address (much like .bss). The linker encodes
the initialization data into a special section called .cinit (for C Initialization), where the startup code from
the run-time library decodes and copies it to its run address.

Source Code Executable File ROM
inta=123; cinit cinit
int b = 456; I
— cinit records cinit records
Comiljll-e \.\ handler table N, handler table SStartug
. \ 4 Y tartup code
\v// Link ,f'} ccrmé:rar?:se Load / comgar?:ﬁed reads cinit
: / 010001000101001 / 010001000104001 table,
.) Linker l"l l/ decompresses
Object File compresses data . source data
source data (uninitialized) | and copies to
.data and creates I RAM run-time
a: .word 123 cinit section. : location.
b: wordd8 || = | T ——————"* a: (123
b: 456

Like copy tables, the source data in the .cinit tables may or may not be compressed. If it is compressed,

Figure 3-3. ROM-Based Variable Initialization Via cinit

the encoding and decoding scheme is identical to that of copy tables so that the handler tables and
decompression handlers can be shared.

The .cinit section contains some or all of the following items:
e The cinit table, consisting of cinit records, which are similar to copy records.

e The handler table, consisting of pointers to decompression routines. The handler table and handlers

are shared by initialization and copy tables.
» The source data, consisting of compressed or uncompressed data used to initialize variables.

These items may be in any order.

SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback

Program Loading and Running

Copyright © 2014-2018, Texas Instruments Incorporated

35

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Run-Time Initialization www.ti.com

Figure 3-4 is a schematic depiction of the .cinit section.

__TI_CINIT Basep cinit record

cinit record cinit table
__T1_CINIT_Limitme
Tl Handler_Table Basep handler 0
handler table
handler N
Tl Handler_Table Limitk
cinit source
data
cinit source cinit source
data data

Figure 3-4. The .cinit Section

The .cinit section has the section type SHT_TI_INITINFO which identifies it as being in this format. Tools
should rely on the section type and not on the name .cinit.

Two special symbols are defined to delimit the cinit table: _ _TI_CINIT_Base points to the cinit table, and
__TI_CINIT_Limit points one byte past the end of the table. The startup code references the table using
these symbols.

Records in the cinit table have the following format:

typedef struct

{
uint32 source_data;
uint32 dest;

} CINIT_RECORD;

* The source_data field points to the source data in the cinit section.

» The dest field points to the destination address. Unlike copy table records, cinit records do not contain
a size field; the size is always encoded in the source data.

The source data has the same format as compressed copy table source data, and the handlers have the
same interface. In addition to the RLE and LZSS formats, there are two additional formats defined for cinit
records: uncompressed, and zero-initialized.

» The explicit uncompressed format is required because unlike a copy table record, there is no
overloaded size field in a cinit record. The size field is always encoded into the source data, even
when no compression is used. The encoding is as follows:

handler index padding size data

1 byte 3 bytes 4 bytes size bytes

The encoded data includes a size field, which is aligned on the next 4-byte boundary following the
handler index. The size field specifies how many bytes are in the data payload, which begins
immediately following the size field. The initialization operation copies size bytes from the data field to

36 Program Loading and Running SPRUHV6C—-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Run-Time Initialization

the destination address. The Tl run-time library contains a handler called _ _TI_decompress_none for
the uncompressed format.

* The zero-initialization format is a compact format used for the common case of variables whose initial
value is zero. The encoding is as follows:

handler index padding size

1 byte 3 bytes 4 bytes

The size field is aligned on the next 4-byte boundary following the handler index. The initialization
operation fills size consecutive bytes at the destination address with zero. The TI run-time library
contains a handler called _ _TI_zero _init for this format.

As an optimization, the linker is free to coalesce initializations of adjacent objects into single cinit
records if they can be profitably encoded using the same format. This is typically significant for zero-
initialized objects.

3.3.3 Copy Tables

The RTS function copy_in can be used at run-time to move code and data around, usually from its load
address to its run address. This function reads size and location information from copy tables. The linker
automatically generates several kinds of copy tables. Refer to Section 8.8.

You can create and control code overlays with copy tables. See Section 8.8.4 for details and examples.

Using copy tables is similar to performing run-time relocations as described in Section 3.5, however copy
tables require a specific table format.

3.3.3.1 BINIT

The BINIT (boot-time initialization) copy table is special in that the target will automatically perform the
copying at auto-initialization time. Refer to Section 8.8.4.2 for more about the BINIT copy table name. The
BINIT copy table is copied before .cinit processing.

3.3.3.2 CINIT

EABI .cinit tables are special kinds of copy tables. Refer to Section 3.3.2 for information about using the
.Cinit section with the ROM model for variable initialization.

3.4 Arguments to main

Some programs expect arguments to main (argc, argv) to be valid. Normally this isn't possible for an
embedded program, but the TI runtime does provide a way to do it. The user must allocate an .args
section of an appropriate size using the --args linker option. It is the responsibility of the loader to populate
the .args section. It is not specified how the loader determines which arguments to pass to the target. The
format of the arguments is the same as an array of pointers to char on the target.

See Section 8.4.4 for information about allocating memory for argument passing.

3.5 Run-Time Relocation

At times you may want to load code into one area of memory and move it to another area before running
it. For example, you may have performance-critical code in an external-memory-based system. The code
must be loaded into external memory, but it would run faster in internal memory. Because internal memory
is limited, you might swap in different speed-critical functions at different times.

The linker provides a way to handle this. Using the SECTIONS directive, you can optionally direct the
linker to allocate a section twice: first to set its load address and again to set its run address. Use the load
keyword for the load address and the run keyword for the run address. See Section 3.1.1 for more about
load and run addresses. If a section is assigned two addresses at link time, all labels defined in the
section are relocated to refer to the run-time address so that references to the section (such as branches)
are correct when the code runs.

SPRUHV6C-July 2014—-Revised July 2018 Program Loading and Running 37

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Additional Information www.ti.com

3.6

If you provide only one allocation (either load or run) for a section, the section is allocated only once and
loads and runs at the same address. If you provide both allocations, the section is actually allocated as if it
were two separate sections of the same size.

Uninitialized sections (such as .bss) are not loaded, so the only significant address is the run address. The
linker allocates uninitialized sections only once; if you specify both run and load addresses, the linker
warns you and ignores the load address.

For a complete description of run-time relocation, see Section 8.5.6.

Additional Information

See the following sections and documents for additional information:

Section 8.4.4, "Allocate Memory for Use by the Loader to Pass Arguments (--arg_size Option)"
Section 8.4.12, "Define an Entry Point (--entry_point Option)"

Section 8.5.6.1 ,"Specifying Load and Run Addresses"

Section 8.8, "Linker-Generated Copy Tables"

Section 8.10.1, "Run-Time Initialization"

Chapter 12, "Hex Conversion Utility Description"

"Run-Time Initialization" and "System Initialization" sections in the PRU Optimizing C/C++ Compiler User's
Guide

Creating a Second-Level Bootloader for FLASH Bootloading on TMS320C6000 Platform With Code
Composer Studio (SPRA999).

38

Program Loading and Running SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C
http://www.ti.com/lit/pdf/SPRA999

Chapter 4

SPRUHV6C-July 2014—Revised July 2018

TeEXAS
INSTRUMENTS

Assembler Description

The PRU assembler translates assembly language source files into machine language object files. These
files are object modules, which are discussed in Chapter 2. Source files can contain the following
assembly language elements:

Assembler directives described in Chapter 5
Macro directives described in Chapter 6
Assembly language instructions described in the PRU Family User's Guide.

Topic Page
o R AN Y =T a1] (=T G @ L= Y= PP 40
4.2 The Assembler's Role in the Software Development FIOWcccoiiiiiiiiiiiiiiinnnnnnn. 41
4.3 InVOKING the ASSEMDIETuie ettt et e e e 42
4.4 Naming Alternate Directories for Assembler INPUtooeiiiiiiiiiiiii e 43
4.5 Source Statement FOIMat......ouieiuieiitieieii et a s e e e e e s sas e e e e raas 45
T I (=T = 1 0 1] = L | P 47
4.7 Assembler SYMDBDOIS.o 49
T b o (=17 [0 0 =P 54
4.9 Built-in FUNCLIONS @N0 OPEIAtOFS ..uuiutieieieieetaeieeeieeee et it aaeeaeae e rasnsaataeeaeannns 58
a1 O TS To T 01 o = 1 41 o PP 59
4.11 Debugging ASSEMDIY SOUICE ..uiuiuiiiiiiii ettt ettt e e e e e e e aneas 61
4.12 CroSS-ReferenCe LiStiNgS cucueu e ettt ea e a e s et e enen e enen 62

SPRUHV6C-July 2014—-Revised July 2018 Assembler Description 39

Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Assembler Overview www.ti.com

41 Assembler Overview

The 2-pass assembler does the following:
* Processes the source statements in a text file to produce a relocatable object file
» Produces a source listing (if requested) and provides you with control over this listing

» Allows you to divide your code into sections and maintain a section program counter (SPC) for each
section of object code

» Defines and references global symbols and appends a cross-reference listing to the source listing (if
requested)

» Allows conditional assembly
e Supports macros, allowing you to define macros inline or in a library

40 Assembler Description SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com The Assembler's Role in the Software Development Flow

4.2 The Assembler's Role in the Software Development Flow

Figure 4-1 illustrates the assembler's role in the software development flow. The shaded portion highlights
the most common assembler development path. The assembler accepts assembly language source files
as input, both those you create and those created by the PRU C/C++ compiler.

Figure 4-1. The Assembler in the PRU Software Development Flow

C/C++
source
files
L L
Macro
source C/C++
files compiler

Assembler GIGS naims

sS0uUrce

demangling
utility

:qubé:::z Assembler
Object Libratr_}irl:‘build Debugging
files uHity
I_[
H Run-time-
Library of h support
object > library
files

Executable
object file

Hex-conversion

utility

EPROM Absolute lister Cross-reference Object file

programmer lister utilities

SPRUHV6C-July 2014—-Revised July 2018

Assembler Description 41
Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

Invoking the Assembler

13 TEXAS
INSTRUMENTS

www.ti.com

4.3 Invoking the Assembler

To invoke the assembler, enter the following:

clpru input file [options]

clpru is the command that invokes the assembler through the compiler. The compiler considers
any file with an .asm extension to be an assembly file and invokes the assembler.

input file names the assembly language source file.

options identify the assembler options that you want to use. Options are case sensitive and can

appear anywhere on the command line following the command. Precede each option with
one or two hyphens as shown.

The valid assembler options are listed in Table 4-1.

Table 4-1. PRU Assembler Options

Option

Alias

Description

--absolute_listing

--asm_define=name[=def]

--asm_dependency

--asm_includes

--asm_listing
--asm_listing_cross_reference

--asm_undefine=name

--cmd_file=filename

--code_address_listing_unit={
byte | word }

--endian={ big | little }

--include_file=filename

--include_path=pathname

--quiet

--symdebug:dwarf or
--symdebug:none

-ad

-apd

-api

-ahi

Creates an absolute listing. When you use --absolute_listing, the assembler does not produce
an object file. The --absolute_listing option is used in conjunction with the absolute lister.

Sets the name symbol. This is equivalent to defining name with a .set directive in the case of a
numeric value or with an .asg directive otherwise. If value is omitted, the symbol is set to 1.
See Section 4.7.5.

Performs preprocessing for assembly files, but instead of writing preprocessed output, writes a
list of dependency lines suitable for input to a standard make utility. The list is written to a file
with the same name as the source file but with a .ppa extension.

Performs preprocessing for assembly files, but instead of writing preprocessed output, writes a
list of files included with the .include directive. The list is written to a file with the same name
as the source file but with a .ppa extension.

Produces a listing file with the same name as the input file with a .Ist extension.

Produces a cross-reference table and appends it to the end of the listing file; it also adds
cross-reference information to the object file for use by the cross-reference utility. If you do not
request a listing file but use the --asm_listing_cross_reference option, the assembler creates a
listing file automatically, naming it with the same name as the input file with a .Ist extension.

Undefines the predefined constant name, which overrides any --asm_define options for the
specified constant.

Appends the contents of a file to the command line. You can use this option to avoid limitations
on command line length imposed by the host operating system. Use an asterisk or a
semicolon (* or ;) at the beginning of a line in the command file to include comments.
Comments that begin in any other column must begin with a semicolon. Within the command
file, filenames or option parameters containing embedded spaces or hyphens must be
surrounded with quotation marks. For example: "this-file.asm"

Selects the unit to use for the code section program counter field in the assembler listing file.
The default unit is bytes. Note that this option applies to code sections, but not to data
sections. See Section 4.10.

Specify the endianness of both code and data. If not specified, defaults to --endian=little. For
more information, see the PRU Optimizing C/C++ Compiler User's Guide.

Includes the specified file for the assembly module. The file is included before source file
statements. The included file does not appear in the assembly listing files.

Specifies a directory where the assembler can find files named by the .copy, .include, or .mlib
directives. There is no limit to the number of directories you can specify in this manner; each
pathname must be preceded by the --include_path option. See Section 4.4.1.

Suppresses the banner and progress information (assembler runs in quiet mode).

(DWARF is on by default) Enables assembler source debugging in the C source debugger.
Line information is output to the object module for every line of source in the assembly
language source file. You cannot use this option on assembly code that contains .line
directives. See Section 4.11.

42 Assembler Description

SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS

INSTRUMENTS
www.ti.com Naming Alternate Directories for Assembler Input
4.4 Naming Alternate Directories for Assembler Input
The .copy, .include, and .mlib directives tell the assembler to use code from external files. The .copy and
.include directives tell the assembler to read source statements from another file, and the .mlib directive
names a library that contains macro functions. Chapter 5 contains examples of the .copy, .include, and
.mlib directives. The syntax for these directives is:
.copy ["Ifilename["]
.include ["]filename["]
.mlib ["Ifilename["]
The filename names a copyl/include file that the assembler reads statements from or a macro library that
contains macro definitions. If filename begins with a number the double quotes are required. Quotes are
recommended so that there is no issue in dealing with path information that is included in the filename
specification or path names that include white space. The filename may be a complete pathname, a partial
pathname, or a filename with no path information.
The assembler searches for the file in the following locations in the order given:
1. The directory that contains the current source file. The current source file is the file being assembled
when the .copy, .include, or .mlib directive is encountered.
2. Any directories hamed with the --include_path option
3. Any directories named with the PRU_A_DIR environment variable
4. Any directories named with the PRU_A_DIR environment variable
Because of this search hierarchy, you can augment the assembler's directory search algorithm by using
the --include_path option (described in Section 4.4.1) or the PRU_A_DIR environment variable (described
in Section 4.4.2). The PRU_A_DIR environment variable is discussed in the PRU Optimizing C/C++
Compiler User's Guide.
4.4.1 Using the --include_path Assembler Option
The --include_path assembler option names an alternate directory that contains copy/include files or
macro libraries. The format of the --include_path option is as follows:
clpru --include_path= pathname source filename [other options] ‘
There is no limit to the number of --include_path options per invocation; each --include_path option names
one pathname. In assembly source, you can use the .copy, .include, or .mlib directive without specifying
path information. If the assembler does not find the file in the directory that contains the current source
file, it searches the paths designated by the --include_path options.
For example, assume that a file called source.asm is in the current directory; source.asm contains the
following directive statement:
.copy '‘copy-.asm"
Assume the following paths for the copy.asm file:
UNIX: [tools/files/copy.asm
Windows: c:\tools\files\copy.asm
You could set up the search path with the commands shown below:
Operating System Enter
UNIX (Bourne shell) clpru --include_path=/tools/files source.asm
Windows clpru --include_path=c:\tools\files source.asm
SPRUHV6C-July 2014—-Revised July 2018 Assembler Description 43

Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Naming Alternate Directories for Assembler Input www.ti.com

The assembler first searches for copy.asm in the current directory because source.asm is in the current
directory. Then the assembler searches in the directory named with the --include_path option.

4.4.2 Using the PRU_A_DIR Environment Variable

An environment variable is a system symbol that you define and assign a string to. The assembler uses
the PRU_A_DIR environment variable to name alternate directories that contain copy/include files or
macro libraries.

The assembler looks for the PRU_A_DIR environment variable and then reads and processes it. If the
assembler does not find the PRU_A DIR variable, it then searches for PRU_C_DIR. The processor-
specific variables are useful when you are using Texas Instruments tools for different processors at the
same time.

See the PRU Optimizing C/C++ Compiler User's Guide for details on PRU_C_DIR.
The command syntax for assigning the environment variable is as follows:

Operating System Enter
UNIX (Bourne Shell) PRU_A_DIR=" pathname, ; pathname, ; . .."; export PRU_A_DIR
Windows set PRU_A_DIR= pathname, ; pathname, ; . ..

The pathnames are directories that contain copy/include files or macro libraries. The pathnames must
follow these constraints:

» Pathnames must be separated with a semicolon.

» Spaces or tabs at the beginning or end of a path are ignored. For example the space before and after
the semicolon in the following is ignored:

set PRU_A_DIR= c:\path\one\to\tools ; c:\path\two\to\tools

» Spaces and tabs are allowed within paths to accommodate Windows directories that contain spaces.
For example, the pathnames in the following are valid:

set PRU_A_ DIR=c:\first path\to\tools;d:\second path\to\tools

In assembly source, you can use the .copy, .include, or .mlib directive without specifying path information.
If the assembler does not find the file in the directory that contains the current source file or in directories
named by the --include_path option, it searches the paths named by the environment variable.

For example, assume that a file called source.asm contains these statements:

.copy '‘copyl.asm™
.copy '‘copyZ2.asm™

Assume the following paths for the files:

UNIX: tools/files/copyl.asm and /dsys/copy2.asm
Windows: c:\tools\files\copyl.asm and c:\dsys\copy2.asm

You could set up the search path with the commands shown below:

Operating System Enter
UNIX (Bourne shell) PRU_A_DIR="/dsys"; export PRU_A DIR

clpru --include_path=/tools/files source.asm
Windows PRU_A_DIR=c:\dsys

clpru --include_path=c:\tools\files source.asm

The assembler first searches for copyl.asm and copy2.asm in the current directory because source.asm
is in the current directory. Then the assembler searches in the directory named with the --include_path
option and finds copyl.asm. Finally, the assembler searches the directory named with PRU_A_DIR and
finds copy2.asm.

44

Assembler Description SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Source Statement Format

The environment variable remains set until you reboot the system or reset the variable by entering one of
these commands:

Operating System Enter
UNIX (Bourne shell) unset PRU_A DIR
Windows set PRU_A DIR=

45 Source Statement Format

Each line in a PRU assembly input file can be empty, a comment, an assembler directive, a macro
invocation, or an assembly instruction.

Assembly language source statements can contain four ordered fields (label, mnemonic, operand list, and
comment). The general syntax for source statements is as follows:

‘ [label[:]Jmnemonic [operand list][;comment]

Following are examples of source statements:

SYM1 .set 2 ; Symbol SYM1 = 2
Begin: LDI RO, SYMm1 ; Load RO with 2
-word 016h ; Initialize word (016h)

The PRU assembler reads an unlimited number of characters per line. Source statements that extend
beyond 400 characters in length (including comments) are truncated in the listing file.

Follow these guidelines:

» All statements must begin with a label, a blank, an asterisk, or a semicolon.

» Labels are optional for most statements; if used, they must begin in column 1.
» One or more space or tab characters must separate each field.

» Comments are optional. Comments that begin in column 1 can begin with an asterisk or a semicolon (*
or;), but comments that begin in any other column must begin with a semicolon.

NOTE: A mnemonic cannot begin in column 1 or it will be interpreted as a label. Mnemonic opcodes
and assembler directive names without the . prefix are valid label names. Remember to
always use whitespace before the mnemonic, or the assembler will think the identifier is a
new label definition.

The following sections describe each of the fields.

SPRUHV6C-July 2014—-Revised July 2018 Assembler Description 45

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS

INSTRUMENTS
Source Statement Format www.ti.com
45.1 Label Field
A label must be a legal identifier (see Section 4.7.1) placed in column 1. Every instruction may optionally
have a label. Many directives allow a label, and some require a label.
A label can be followed by a colon (:). The colon is not treated as part of the label name. If you do not use
a label, the first character position must contain a blank, a semicolon, or an asterisk.
When you use a label on an assembly instruction or data directive, an assembler symbol (Section 4.7)
with the same name is created. Its value is the current value of the section program counter (SPC, see
Section 2.4.5). This symbol represents the address of that instruction. In the following example, the .word
directive is used to create an array of 3 words. Because a label was used, the assembly symbol Start
refers to the first word, and the symbol will have the value 40h.
- 9 - - * Assume some code was assembled
10 00000040 0000000A Start: .word O0Ah,3,7
00000044 00000003
00000048 00000007
A label on a line by itself is a valid statement. When a label appears on a line by itself, it points to the
instruction on the next line (the SPC is not incremented):
1 00000000 Here:
2 00000000 00000003 .word 3
A label on a line by itself is equivalent to writing:
Here: .equ $; $ provides the current value of the SPC
If you do not use a label, the character in column 1 must be a blank, an asterisk, or a semicolon.
45.2 Mnemonic Field
The mnemonic field follows the label field. The mnemonic field cannot start in column 1; if it does, it is
interpreted as a label. There is one exception: the parallel bars (|[) of the mnemonic field can start in
column 1. The mnemonic field contains one of the following items:
e Machine-instruction mnemonic (such as ADD, SBBO, STR)
« Assembler directive (such as .data, .list, .equ)
* Macro directive (such as .macro, .var, .mexit)
* Macro invocation
45.3 Operand Field
The operand field follows the mnemonic field and contains zero or more comma-separated operands. An
operand can be one of the following:
* an immediate operand (usually a constant or symbol) (see Section 4.6 and Section 4.7)
» aregister operand
+ a memory reference operand
e an expression that evaluates to one of the above (see Section 4.8)
An immediate operand is encoded directly in the instruction. The value of an immediate operand must be
a constant expression. Most instructions with an immediate operand require an absolute constant
expression, such as 1234. Some instructions (such as a call instruction) allow a relocatable constant
expression, such as a symbol defined in another file. (See Section 4.8 for details about types of
expressions.)
A register operand is a special pre-defined symbol that represents a CPU register.
A memory reference operand uses one of several memory addressing modes to refer to a location in
memory. Memory reference operands use a special target-specific syntax defined in the appropriate CPU
and Instruction Set Reference Guide.
You must separate operands with commas. Not all operand types are supported for all operands. See the
description of the specific instruction in the CPU and Instruction Set Reference Guide for your device.
46 Assembler Description SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Source Statement Format

45.3.1 Immediate Values as Operands

You use immediate values as operands primarily with instructions. In some cases, you can use immediate
values with the operands of directives. For instance, you can use immediate values with the .byte directive
to load values into the current section.

The # sign may not be used in instructions or directives to identify immediate values. Doing so causes a
syntax error.

See Chapter 5 for more information on the syntax and usage of directives.

45.4 Comment Field

A comment can begin in any column and extends to the end of the source line. A comment can contain
any ASCII character, including blanks. Comments are printed in the assembly source listing, but they do
not affect the assembly.

A source statement that contains only a comment is valid. If it begins in column 1, it can start with a
semicolon (;) or an asterisk (*). Comments that begin anywhere else on the line must begin with a
semicolon. The asterisk identifies a comment only if it appears in column 1.

46 Literal Constants

A literal constant (also known as a literal or in some other documents as an immediate value) is a value
that represents itself, such as 12, 3.14, or "hello".

The assembler supports several types of literals:
* Binary integer literals

* Octal integer literals

e Decimal integer literals

» Hexadecimal integer literals

* Character literals

» Character string literals

* Floating-point literals

Error checking for invalid or incomplete literals is performed.

4.6.1 Integer Literals

The assembler maintains each integer literal internally as a 32-bit signless quantity. Literals are
considered unsigned values, and are not sign extended. For example, the literal 00FFh is equal to O0FF
(base 16) or 255 (base 10); it does not equal -1. which is OFFFFFFFFh (base 16). Note that if you store
OFFh in a .byte location, the bits will be exactly the same as if you had stored -1. It is up to the reader of
that location to interpret the signedness of the bits.

4.6.1.1 Binary Integer Literals

A binary integer literal is a string of up to 32 binary digits (Os and 1s) followed by the suffix B (or b). Binary
literals of the form "0[bB][10]+" are also supported. If fewer than 32 digits are specified, the assembler
right justifies the value and fills the unspecified bits with zeros. These are examples of valid binary literals:

00000000B Literal equal to 0,4 Or Oy
0100000b Literal equal to 32,, or 20,4
01b Literal equal to 1,5 0r 14
11111000B Literal equal to 248,, or OF8,4
0b00101010 Literal equal to 42,, or 2A ;4
0B101010 Literal equal to 42,, or 2A

SPRUHV6C-July 2014—-Revised July 2018 Assembler Description 47

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Literal Constants www.ti.com

4.6.1.2 Octal Integer Literals

An octal integer literal is a string of up to 11 octal digits (0 through 7) followed by the suffix Q (or q). Octal
literals may also begin with a 0, contain no 8 or 9 digits, and end with no suffix. These are examples of
valid octal literals:

10Q Literal equal to 8,, or 8,4

054321 Literal equal to 22737,, or 58D1,,
100000Q Literal equal to 32768, or 8000,
2269 Literal equal to 150, or 96,

4.6.1.3 Decimal Integer Literals

A decimal integer literal is a string of decimal digits ranging from -2147 483 648 to 4 294 967 295. These
are examples of valid decimal integer literals:

1000 Literal equal to 1000,, or 3E8,;
-32768 Literal equal to -32 768, or -8000,,
25 Literal equal to 25,, or 19,4

4815162342 Literal equal to 4815162342,, or 11FO18BEG6,

4.6.1.4 Hexadecimal Integer Literals

A hexadecimal integer literal is a string of up to eight hexadecimal digits followed by the suffix H (or h) or
preceded by Ox. A hexadecimal literal must begin with a decimal value (0-9) if it is indicated by the H or h
suffix.

Hexadecimal digits include the decimal values 0-9 and the letters A-F or a-f. If fewer than eight
hexadecimal digits are specified, the assembler right-justifies the bits.

These are examples of valid hexadecimal literals:

78h Literal equal to 120,, or 0078,
0x78 Literal equal to 120,, or 00784
OFh Literal equal to 15,, or 000F ;4
37ACh Literal equal to 14252, or 37AC;

4.6.1.5 Character Literals

A character literal is a single character enclosed in single quotes. The characters are represented
internally as 8-bit ASCII characters. Two consecutive single quotes are required to represent each single
guote that is part of a character literal. A character literal consisting only of two single quotes is valid and
is assigned the value 0. These are examples of valid character literals:

a Defines the character literal a and is represented internally as 61,4
'C' Defines the character literal C and is represented internally as 43,4
Defines the character literal ' and is represented internally as 274
Defines a null character and is represented internally as 00,4

Notice the difference between character literals and character string literals (Section 4.6.2 discusses
character strings). A character literal represents a single integer value; a string is a sequence of
characters.

48 Assembler Description SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Literal Constants

4.6.2 Character String Literals

A character string is a sequence of characters enclosed in double quotes. Double quotes that are part of
character strings are represented by two consecutive double quotes. The maximum length of a string
varies and is defined for each directive that requires a character string. Characters are represented
internally as 8-bit ASCII characters.

These are examples of valid character strings:

"sample program" defines the 14-character string sample program.
"PLAN""C""" defines the 8-character string PLAN "C".

Character strings are used for the following:

e Filenames, as in .copy "filename"

» Section names, as in .sect "section name"

» Data initialization directives, as in .byte "charstring"
* Operands of .string directives

4.6.3 Floating-Point Literals

A floating-point literal is a string of decimal digits followed by a required decimal point, an optional
fractional portion, and an optional exponent portion. The syntax for a floating-point number is:

[[+-1nnn . [nnn] [EJe [+]-]nnn] |

Replace nnn with a string of decimal digits. You can precede nnn with a + or a -. You must specify a
decimal point. For example, 3.e5 is valid, but 3e5 is not valid. The exponent indicates a power of 10.
These are examples of valid floating-point literals:

3.0

3.14

3.

-0.314e13

+314_.59e-2

The assembler syntax does not support all C89-style float literals nor C99-style hexadecimal constants,
but the $strtod built-in mathematical function supports both. If you want to specify a floating-point literal
using one of those formats, use $strtod. For example:

$strtod(.3")
$strtod(*'0x1.234p-5")

You cannot directly use NaN, Inf, or -Inf as floating-point literals. Instead, use $strtod to express these
values. The "NaN" and "Inf" strings are handled case-insensitively. See Section 4.9.1 for built-in functions.

4.7 Assembler Symbols

An assembler symbol is a named 32-bit signless integer value, usually representing an address or
absolute integer. A symbol can represent such things as the starting address of a function, variable, or
section. The name of a symbol must be a legal identifier. The identifier becomes a symbolic
representation of the symbol's value, and may be used in subsequent instructions to refer to the symbol's
location or value.

Some assembler symbols become external symbols, and are placed in the object file's symbol table. A
symbol is valid only within the module in which it is defined, unless you use the .global directive or the .def
directive to declare it as an external symbol (see .global directive).

See Section 2.6 for more about symbols and the symbol tables in object files.

SPRUHV6C-July 2014—-Revised July 2018 Assembler Description 49

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Assembler Symbols www.ti.com

4.7.1

4.7.2

4.7.3

Identifiers

Identifiers are names used as labels, registers, symbols, and substitution symbols. An identifier is a string
of alphanumeric characters, the dollar sign, and underscores (A-Z, a-z, 0-9, $, and _). The first character
in an identifier cannot be a number, and identifiers cannot contain embedded blanks. The identifiers you
define are case sensitive; for example, the assembler recognizes ABC, Abc, and abc as three distinct
identifiers.

Labels

An identifier used as a label becomes an assembler symbol, which represent an address in the program.
Labels within a file must be unique.

NOTE: A mnemonic cannot begin in column 1 or it will be interpreted as a label. Mnemonic opcodes
and assembler directive names without the . prefix are valid label names. Remember to
always use whitespace before the mnemonic, or the assembler will think the identifier is a
new label definition.

Local Labels
Local labels are special labels whose scope and effect are temporary. A local label can be defined in two
ways:

» $n, where n is a decimal digit in the range 0-9. For example, $4 and $1 are valid local labels. See
Example 4-1.

* name?, where name is any legal identifier as described above. The assembler replaces the question
mark with a period followed by a unique number. When the source code is expanded, you will not see
the unique number in the listing file. Your label appears with the question mark as it did in the source
definition.

You cannot declare these types of labels as global.

Normal labels must be unique (they can be declared only once), and they can be used as constants in the
operand field. Local labels, however, can be undefined and defined again. Local labels cannot be defined
by directives.

A local label can be undefined or reset in one of these ways:

* By using the .newblock directive

* By changing sections (using a .sect, .text, or .data directive)

» By entering an include file (specified by the .include or .copy directive)

* By leaving an include file (specified by the .include or .copy directive)

Example 4-1. Local Labels of the Form $n

This is an example of code that declares and uses a local label legally:

$1:

$1:

QBEQ $1, rl4, 0
ADD rl4, ri4, 1

-newblock

QBEQ $1, ri15, 0
ADD r15, ri5, 1

IMP r3.w2

The following code uses a local label illegally:

$1:

QBEQ $1, rl4, O
ADD rl4, ri4, 1

QBEQ $1, ri5, 0

50

Assembler Description SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Assembler Symbols

Example 4-1. Local Labels of the Form $n (continued)

ADD ri15, ri5, 1
$1:
JMP r3.w2

The $1 label is not undefined before being reused by the second branch instruction. Therefore, $1 is
redefined, which is illegal.

Local labels are especially useful in macros. If a macro contains a normal label and is called more than
once, the assembler issues a multiple-definition error. If you use a local label and .newblock within a
macro, however, the local label is used and reset each time the macro is expanded.

Up to ten local labels of the $n form can be in effect at one time. Local labels of the form name? are not
limited. After you undefine a local label, you can define it and use it again. Local labels do not appear in
the object code symbol table.

For more information about using labels in macros see Section 6.6.

4.7.4 Symbolic Constants

A symbolic constant is a symbol with a value that is an absolute constant expression (see Section 4.8). By
using symbolic constants, you can assign meaningful names to constant expressions. The .set and
.Struct/.tag/.endstruct directives enable you to set symbolic constants (see Define Assembly-Time
Constant). Once defined, symbolic constants cannot be redefined.

If you use the .set directive to assign a value to a symbol , the symbol becomes a symbolic constant and
may be used where a constant expression is expected. For example:

shift3 .set 3
LDI RO, shift3

You can also use the .set directive to assign symbolic constants for other symbols, such as register
names. In this case, the symbolic constant becomes a synonym for the register:

AuxR1 .set R1
LBBO &AuxR1, R2, 0, 4

The following example shows how the .set directive can be used with the .struct, .tag. and .endstruct
directives. It creates the symbolic constants K, maxbuf, item, value, delta, and i_len.

K .set 1024 ;constant definitions
maxbuf .set 2*K

item .struct ;item structure definition
.int value ;constant offsets value = 0
.int delta ;constant offsets delta = 1

i_len _endstruct

array .tag item ;array declaration
-bss array, i_len*K

The assembler also has many predefined symbolic constants; these are discussed in Section 4.7.6.

SPRUHV6C-July 2014—-Revised July 2018 Assembler Description 51

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Assembler Symbols www.ti.com

4.7.5

Defining Symbolic Constants (--asm_define Option)

The --asm_define option equates a constant value or a string with a symbol. The symbol can then be used
in place of a value in assembly source. The format of the --asm_define option is as follows:

clpru --asm_define=name[=value]

The name is the name of the symbol you want to define. The value is the constant or string value you
want to assign to the symbol. If the value is omitted, the symbol is set to 1. If you want to define a quoted
string and keep the quotation marks, do one of the following:

e For Windows, use --asm_define= name ="\" value \"". For example, --asm_define=car="\"sedan\""

» For UNIX, use --asm_define= name =" value "'. For example, --asm_define=car="'sedan™

* For Code Composer, enter the definition in a file and include that file with the --cmd_file (or -@) option.

Once you have defined the name with the --asm_define option, the symbol can be used with assembly
directives and instructions as if it had been defined with the .set directive. For example, on the command
line you enter:

clpru --asm_define=SYM1=1 --asm_define=SYM2=2 --asm_define=SYM3=3 --asm_define=SYM4=4 value.asm

Since you have assigned values to SYM1, SYM2, SYM3, and SYM4, you can use them in source code.
Example 4-2 shows how the value.asm file uses these symbols without defining them explicitly.

Within assembler source, you can test the symbol defined with the --asm_define option with these
directives:

Type of Test Directive Usage
Existence if Sisdefed(" name ")
Nonexistence if Sisdefed(" name ") =0
Equal to value .if name = value

Not equal to value .if name != value

The argument to the $isdefed built-in function must be enclosed in quotes. The quotes cause the
argument to be interpreted literally rather than as a substitution symbol.

Example 4-2. Using Symbolic Constants Defined on Command Line

IF 4: Lif SYM4 = SYM2 * SYM2
-byte SYM4 ; Equal values
.else
-byte SYM2 * SYM2 ; Unequal values
.endif

IF_5: _.if SYM1 <= 10
-byte 10 ; Less than / equal
.else
-byte SYM1 ; Greater than
.endif

IF_6: _.if SYM3 * SYM2 I= SYM4 + SYM2
-byte SYM3 * SYM2 ; Unequal value
.else
-byte SYM4 + SYM4 ; Equal values
.endif

IF7: Lif SYM1 = SYM2
-byte SYM1
.elseif SYM2 + SYM3 = 5
-byte SYM2 + SYM3
.endif

52 Assembler Description SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Assembler Symbols

4.7.6 Predefined Symbolic Constants
The assembler has several types of predefined symbols.
$, the dollar-sign character, represents the current value of the section program counter (SPC).
In addition, the following predefined processor symbolic constants are available:

Table 4-2. PRU Processor Symbolic Constants

Macro Name Description

__PRU__ Always set to 1.

__PRU_VO__ Set to 1 if the silicon version is 0; otherwise, set to 0.

__PRU_V1 _ Set to 1 if the silicon version is 1; otherwise, set to 0.

__PRU_V2_ _ Set to 1 if the silicon version is 2; otherwise, set to 0.

__PRU_V3__ Set to 1 if the silicon version is 3; otherwise, set to 0.

__TI_EABI__ Always set to 1.

__ BIG_ENDIAN__ Set to 1 if big-endian mode is selected (the --endian=big option is used); otherwise, set to 0.

_ LITTLE_ENDIAN__ Set to 1 if little-endian mode is selected (the default or the --endian=little option is used); otherwise, set
to 0.

4.7.7 Registers

The names of PRU registers are register symbols, including R0-R15. There are no register aliases for the
PRU registers.

Register symbols can be entered as all uppercase or all lowercase characters.For example, R13 could
also be entered as r13.

Control register symbols can be entered in all upper-case or all lower-case characters.

See the "Register Conventions" section of the PRU Optimizing C/C++ Compiler User's Guide for details
about the registers and their uses.

4.7.8 Substitution Symbols

Symbols can be assigned a string value. This enables you to create aliases for character strings by
equating them to symbolic names. Symbols that represent character strings are called substitution
symbols. When the assembler encounters a substitution symbol, its string value is substituted for the
symbol name. Unlike symbolic constants, substitution symbols can be redefined.

A string can be assigned to a substitution symbol anywhere within a program; for example:

.asg ""R2", stack-pointer
; Assigns the string R2 to the substitution symbol stack-pointer.

.asg ""0x20", block2
; Assigns the string 0x20 to the substitution symbol block2.

ADD stack-pointer, stack-pointer, block2
; Adds the value in SP to 0x20 and stores the result in SP.

When you are using macros, substitution symbols are important because macro parameters are actually
substitution symbols that are assigned a macro argument. The following code shows how substitution
symbols are used in macros:

sign_extend_32_8 _macro dest, src
-newblock
MOV dest, src
; zero extends src into dest
QBBC $1, dest, 7
FILL &dest.bl, 3
$1:
-endm

SPRUHV6C-July 2014—-Revised July 2018 Assembler Description 53

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Expressions www.ti.com

4.8

See Chapter 6 for more information about macros.

Expressions

Nearly all values and operands in assembly language are expressions, which may be any of the following:
» aliteral constant

e aregister

* aregister pair

* a memory reference

e asymbol

* a built-in function invocation

* a mathematical or logical operation on one or more expressions

This section defines several types of expressions that are referred to throughout this document. Some
instruction operands accept limited types of expressions. For example, the .if directive requires its operand

be an absolute constant expression with an integer value. Absolute in the context of assembly code
means that the value of the expression must be known at assembly time.

A constant expression is any expression that does not in any way refer to a register or memory reference.
An immediate operand will usually not accept a register or memory reference. It must be given a constant
expression. Constant expressions may be any of the following:

* a literal constant

* an address constant expression

e asymbol whose value is a constant expression

» a built-in function invocation on a constant expression

» a mathematical or logical operation on one or more constant expressions

An address constant expression is a special case of a constant expression. Some immediate operands
that require an address value can accept a symbol plus an addend; for example, some branch
instructions. The symbol must have a value that is an address, and it may be an external symbol. The

addend must be an absolute constant expression with an integer value. For example, a valid address
constant expression is "array+4".

A constant expression may be absolute or relocatable. Absolute means known at assembly time.
Relocatable means constant, but not known until link time. External symbols are relocatable, even if they
refer to a symbol defined in the same module.

An absolute constant expression may not refer to any external symbols anywhere in the expression. In
other words, an absolute constant expression may be any of the following:

* aliteral constant

* an absolute address constant expression

» asymbol whose value is an absolute constant expression

e a huilt-in function invocation whose arguments are all absolute constant expressions
« a mathematical or logical operation on one or more absolute constant expressions

A relocatable constant expression refers to at least one external symbol. Such expressions may contain at
most one external symbol. A relocatable constant expression may be any of the following:

e an external symbol

» arelocatable address constant expression

» asymbol whose value is a relocatable constant expression

» a built-in function invocation with any arguments that are relocatable constant expressions

» a mathematical or logical operation on one or more expressions, at least one of which is a relocatable
constant expression

In some cases, the value of a relocatable address expression may be known at assembly time. For
example, a relative displacement branch may branch to a label defined in the same section.

54

Assembler Description SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Expressions

4.8.1 Mathematical and Logical Operators

The operands of a mathematical or logical operator must be well-defined expressions. That is, you must
use the correct number of operands and the operation must make sense. For example, you cannot take
the XOR of a floating-point value. In addition, well-defined expressions contain only symbols or assembly-
time constants that have been defined before they occur in the directive's expression.

Three main factors influence the order of expression evaluation:

Parentheses Expressions enclosed in parentheses are always evaluated first.
8/(4/2)=4,but8/4/2=1
You cannot substitute braces ({}) or brackets ([]) for parentheses.

Precedence groups Operators, listed in Table 4-3, are divided into nine precedence groups.
When parentheses do not determine the order of expression evaluation,
the highest precedence operation is evaluated first.
8+4/2=10 (4/2is evaluated first)

Left-to-right evaluation When parentheses and precedence groups do not determine the order of
expression evaluation, the expressions are evaluated from left to right,
except for Group 1, which is evaluated from right to left.
8/4*2=4,but8/(4*2)=1

Table 4-3 lists the operators that can be used in expressions, according to precedence group.

Table 4-3. Operators Used in Expressions (Precedence)

Group® Operator Description®
1 + Unary plus
- Unary minus
~ 1s complement
! Logical NOT
2 * Multiplication
/ Division
% Modulo
3 + Addition
- Subtraction
4 << Shift left
>> Shift right
5 < Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to
6 =[=] Equal to
1= Not equal to
7 & Bitwise AND
8 N Bitwise exclusive OR (XOR)
9 | Bitwise OR

@ Group 1 operators are evaluated right to left. All other operators are evaluated left to right.
@ Unary + and - have higher precedence than the binary forms.

The assembler checks for overflow and underflow conditions when arithmetic operations are performed
during assembly. It issues a warning (the "value truncated" message) whenever an overflow or underflow
occurs. The assembler does not check for overflow or underflow in multiplication.

SPRUHV6C-July 2014—-Revised July 2018 Assembler Description 55

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Expressions www.ti.com

4.8.2

4.8.3

48.4

Relational Operators and Conditional Expressions

The assembler supports relational operators that can be used in any expression; they are especially
useful for conditional assembly. Relational operators include the following:

= Equal to | = Not equal to
< Less than <= Less than or equal to
> Greater than > = Greater than or equal to

Conditional expressions evaluate to 1 if true and O if false and can be used only on operands of equivalent
types; for example, absolute value compared to absolute value, but not absolute value compared to
relocatable value.

Well-Defined Expressions

Some assembler directives, such as .if, require well-defined absolute constant expressions as operands.
Well-defined expressions contain only symbols or assembly-time constants that have been defined before
they occur in the directive's expression. In addition, they must use the correct number of operands and the
operation must make sense. The evaluation of a well-defined expression must be unambiguous.

This is an example of a well-defined expression:
1000h+X

where X was previously defined as an absolute symbol.

Relocatable Symbols and Legal Expressions
All legal expressions can be reduced to one of two forms:
relocatable symbol + absolute symbol
or
absolute value

Unary operators can be applied only to absolute values; they cannot be applied to relocatable symbols.
Expressions that cannot be reduced to contain only one relocatable symbol are illegal.

Table 4-4 summarizes valid operations on absolute, relocatable, and external symbols. An expression
cannot contain multiplication or division by a relocatable or external symbol. An expression cannot contain
unresolved symbols that are relocatable to other sections.

Symbols that have been defined as global with the .global directive can also be used in expressions; in
Table 4-4, these symbols are referred to as external.

Table 4-4. Expressions With Absolute and Relocatable Symbols

If Ais... and If Bis..., then A +Bis... and A-Bis...
absolute absolute absolute absolute
absolute relocatable relocatable illegal
absolute external external illegal
relocatable absolute relocatable relocatable
relocatable relocatable illegal absolute®
relocatable external illegal illegal
external absolute external external
external relocatable illegal illegal
external external illegal illegal

@ A and B must be in the same section; otherwise, adding relocatable symbols to relocatable symbols is illegal.

56

Assembler Description SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Expressions

4.8.5 Expression Examples

Following are examples of expressions that use relocatable and absolute symbols. These examples use
four symbols that are defined in the same section:

-global extern_1 ; Defined in an external module

intern_1: _word ""D* ; Relocatable, defined in current
; module

LAB1: .set 2 ; LAB1 = 2

intern_2 ; Relocatable, defined in current
; module

intern_3 ; Relocatable, defined in current

; module
 Example 1

The statements in this example use an absolute symbol, LAB1, which is defined to have a value of 2.
The first statement loads the value 51 into RO. The second statement loads the value 27 into RO.
LDI RO, LAB1 + ((4+3) * 7) ; RO = 51
32+ *TD
;2 + (49) =51
LDI RO, LABL + 4 + (3*7) ; RO = 27
2+ 4+ (21) = 27
» Example 2
The first statement in the following example is valid; the statements that follow it are invalid

LDI R1, intern_1 - 10 ; Legal

LDl R1, 10-intern_1 ; Can"t negate reloc. symbol
LDI R1, -(intern_1) ; Can"t negate reloc. symbol
LDl R1, intern_1/10 ; / isn"t additive operator

LDl R1, intern_1 + intern_2 ; Multiple relocatables
 Example 3

The first statement below is legal; although intern_1 and intern_2 are relocatable, their difference is
absolute because they are in the same section. Subtracting one relocatable symbol from another
reduces the expression to relocatable symbol + absolute value. The second statement is illegal
because the sum of two relocatable symbols is not an absolute value.

LDR R1, intern_1l - intern_2 + intern_3 ; Legal

LDR R1, intern_1 + intern_2 + intern_3 ; Illegal
 Example 4

A relocatable symbol's placement in the expression is important to expression evaluation. Although the
statement below is similar to the first statement in the previous example, it is illegal because of left-to-
right operator precedence; the assembler attempts to add intern_1 to extern_3.

LDR R1, intern_1 + intern_3 - intern_2 ; Illegal

SPRUHV6C-July 2014—-Revised July 2018 Assembler Description 57

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

Built-in Functions and Operators

13 TEXAS
INSTRUMENTS

www.ti.com

4.9 Built-in Functions and Operators

The assembler supports built-in mathematical functions and built-in addressing operators.

The built-in substitution symbol functions are discussed in Section 6.3.2.

4.9.1 Built-In Math and Trigonometric Functions

The assembler supports built-in functions for conversions and various math computations. Table 4-5
describes the built-in functions. The expr must be a constant value.

Table 4-5. Built-In Mathematical Functions

Function

Description

$acos(expr)
$asin(expr)

$atan (expr)
$atan2(expr, y)
$ceil(expr)
$cos(expr)
$cosh(expr)
$cvf(expr)
$cvi(expr)
$exp(expr)
$fabs(expr)
$floor(expr)
$fmod(expr, y)
$int(expr)
$ldexp(expr, expr2)
$log(expr)
$log10(expr)
$max(exprl, expr2)
$min(exprl, expr2)
$pow(exprl, expr2)
$round(expr)
$sgn(expr)
$sin(expr)
$sinh(expr)
$sqrt(expr)
$strtod(str)

$tan(expr)
$tanh(expr)
$trunc(expr)

Returns the arccosine of expr as a floating-point value

Returns the arcsine of expr as a floating-point value

Returns the arctangent of expr as a floating-point value

Returns the arctangent of expr as a floating-point value in range [-x, =]
Returns the smallest integer not less than expr

Returns the cosine of expr as a floating-point value

Returns the hyperbolic cosine of expr as a floating-point value
Converts expr to a floating-point value

converts expr to integer value

Returns the exponential function e

Returns the absolute value of expr as a floating-point value
Returns the largest integer not greater than expr

Returns the remainder of exprl + expr2

Returns 1 if expr has an integer value; else returns 0. Returns an integer.
Multiplies expr by an integer power of 2. That is, exprl x 2 2
Returns the natural logarithm of expr, where expr>0

Returns the base 10 logarithm of expr, where expr>0

Returns the maximum of two values

Returns the minimum of two values

Returns exprlraised to the power of expr2

Returns expr rounded to the nearest integer

Returns the sign of expr.

Returns the sine of expr

Returns the hyperbolic sine of expr as a floating-point value
Returns the square root of expr, expr=0, as a floating-point value

Converts a character string to a double precision floating-point value. The string contains a properly-
formatted C99-style floating-point literal.

Returns the tangent of expr as a floating-point value
Returns the hyperbolic tangent of expr as a floating-point value
Returns expr rounded toward 0

Assembler Description

SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Source Listings

4.10 Source Listings

A source listing shows source statements and the object code they produce. To obtain a listing file, invoke
the assembler with the --asm_listing option (see Section 4.3).

Two banner lines, a blank line, and a title line are at the top of each source listing page. Any title supplied
by the .title directive is printed on the title line. A page number is printed to the right of the title. If you do
not use the .title directive, the name of the source file is printed. The assembler inserts a blank line below
the title line.

Each line in the source file produces at least one line in the listing file. This line shows a source statement
number, an SPC value, the object code assembled, and the source statement. Figure 4-2 shows these in
an actual listing file.
Field 1: Source Statement Number

Line number

The source statement number is a decimal number. The assembler numbers source lines as it
encounters them in the source file; some statements increment the line counter but are not listed. (For
example, .title statements and statements following a .nolist are not listed.) The difference between two
consecutive source line numbers indicates the number of intervening statements in the source file that
are not listed.

Include file letter

A letter preceding the line number indicates the line is assembled from the include file designated by
the letter.

Nesting level number
A number preceding the line number indicates the nesting level of macro expansions or loop blocks.

Field 2: Section Program Counter

This field contains the SPC value, which is hexadecimal. All sections (.text, .data, .bss, and named
sections) maintain separate SPCs. Some directives do not affect the SPC and leave this field blank.

The --code_address_listing_unit={ byte | word } assembler option changes the unit used for the code
section program counter field in the assembler listing file. By default bytes are used. Note that this
option applies to code sections, but not to data sections.

Field 3: Object Code

This field contains the hexadecimal representation of the object code. All machine instructions and
directives use this field to list object code. This field also indicates the relocation type associated with
an operand for this line of source code. If more than one operand is relocatable, this column indicates
the relocation type for the first operand. The characters that can appear in this column and their
associated relocation types are listed below:

! undefined external reference
.text relocatable

+ .sect relocatable

.data relocatable

- .bss, .usect relocatable

% relocation expression

Field 4: Source Statement Field

This field contains the characters of the source statement as they were scanned by the assembler. The
assembler accepts a maximum line length of 200 characters. Spacing in this field is determined by the
spacing in the source statement.

SPRUHV6C-July 2014—-Revised July 2018 Assembler Description 59
Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

Source Listings

I

TEXAS
INSTRUMENTS

www.ti.com

Figure 4-2 shows an assembler listing with each of the four fields identified.

Include file

J

Figure 4-2. Example Assembler Listing

Line number

e e e e

(- T I SO BT S VR I P

Lo
17
=

et
=]

[
%]

13
14
15

1lé

sign extend 32 8 .macro dest, src

-newblock

MOV dest, src
OBREBC $1, dest, 7
FILL &dest.bl, 3

.endm

.glokal sign extend
goooooaon

oooooooo

.newblock
00000000 O0CCOOOQLO0EQEEE
Qooo0o0004 QOOQOOCOCS0TEEOZ
00000008 O0COOO00ZEFFOL1ZE
£1:
0O000000c OOOOCOZ0C30000

sign extend
sign extend 32 8 R14, R14.b0

MOV R14, R14.k0
ORBC 51, R14, 7
FILL &R14.bl, 3

JMP R3.wZ2

W
Field 1

LAY P s
A

N
Field 2 Field 3

W
Field 4

60

Assembler Description

Copyright © 2014-2018, Texas Instruments Incorporated

SPRUHV6C-July 2014—-Revised July 2018
Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Debugging Assembly Source

4.11 Debugging Assembly Source

By default, when you compile an assembly file, the assembler provides symbolic debugging information
that allows you to step through your assembly code in a debugger rather than using the Disassembly
window in Code Composer Studio. This enables you to view source comments and other source-code
annotations while debugging. The default has the same behavior as using the --symdebug:dwarf option.
You can disable the generation of debugging information by using the --symdebug:none option.

The .asmfunc and .endasmfunc (see .asmfunc directive) directives enable you to use C characteristics in
assembly code that makes the process of debugging an assembly file more closely resemble debugging a
C/C++ source file.

The .asmfunc and .endasmfunc directives allow you to name certain areas of your code, and make these
areas appear in the debugger as C functions. Contiguous sections of assembly code that are not enclosed
by the .asmfunc and .endasmfunc directives are automatically placed in assembler-defined functions
named with this syntax:

‘$ filename : starting source line : ending source line $

If you want to view your variables as a user-defined type in C code, the types must be declared and the
variables must be defined in a C file. This C file can then be referenced in assembly code using the .ref
directive (see .ref directive). Example 4-3 shows the cvar.c C program that defines a variable, svar, as the
structure type X. The svar variable is then referenced in the addfive.asm assembly program in Example 4-
4 and 5 is added to svar's second data member.

Compile both source files with the --symdebug:dwarf option (-g) and link them as follows:

clpru --symdebug:dwarf cvars.c addfive.asm --run_linker --library=Ink.cmd --
library=rtspruv3_le.lib
--output_file=addfive.out

When you load this program into a symbolic debugger, addfive appears as a C function. You can monitor
the values in svar while stepping through main just as you would any regular C variable.

Example 4-3. Viewing Assembly Variables as C Types C Program

typedef struct {
int ml;
int m2;

X
X svar = {1, 2 };

Example 4-4. Assembly Program for Example 4-3

.sect "._text:addfive"
-global addfive

addfive: .asmfunc

LDI rO, svar+4
LBBO &rl, rOo, 0, 4
ADD rl, rl, 0x05
SBBO &rli, r0, O, 4
JIMP r3.w2
-endasmfunc

SPRUHV6C-July 2014—-Revised July 2018 Assembler Description 61

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

Cross-Reference Listings

13 TEXAS
INSTRUMENTS

www.ti.com

4.12 Cross-Reference Listings

A cross-reference listing shows symbols and their definitions. To obtain a cross-reference listing, invoke
the assembler with the --asm_listing_cross_reference option (see Section 4.3) or use the .option directive
with the X operand (see Select Listing Options). The assembler appends the cross-reference to the end of
the source listing. Example 4-5 shows the four fields contained in the cross-reference listing.

Example 4-5. An Assembler Cross-Reference Listing

LABEL VALUE DEFN REF
__BIG_ENDIAN__ 00000000 0
_ LITTLE_ENDIAN__ 00000001 0
__PRU_VO__ 00000000 0
__PRU_V1__ 00000000 0
__PRU_V2__ 00000000 0
__PRU_V3__ 00000000 0
__PRU__ 00000001 0
__ TI1_ASSEMBLER_VERSION_QUAL_ID__ 00003760 0
__TI_ASSEMBLER_VERSION_QUAL_ 00000049 0
__ TI1_ASSEMBLER_VERSION__ 001e8868 0
_ TI_EABI__ 00000001 0
aloop 00000010" 38 38 38
buffer 00000000~ 10
coeff 00000000" 5
gptr REF 14 14 40
inbuf 00000001~ 31
ivals 00000010" 26
11 00000004~ 21 21 21
ptr 0000000c** 14
var2 00000000- 30
Label column contains each symbol that was defined or referenced during the assembly.
Value column contains an 8-digit hexadecimal number (which is the value assigned to the
symbol) or a name that describes the symbol's attributes. A value may also be
preceded by a character that describes the symbol's attributes. Table 4-6 lists these
characters and names.
Definition (DEFN) column contains the statement number that defines the symbol. This
column is blank for undefined symbols.
Reference (REF) column lists the line numbers of statements that reference the symbol. A
blank in this column indicates that the symbol was never used.
Table 4-6. Symbol Attributes
Character or Name Meaning
REF External reference (global symbol)
UNDF Undefined
' Symbol defined in a .text section
Symbol defined in a .data section
+ Symbol defined in a .sect section
- Symbol defined in a .bss or .usect section
62 Assembler Description SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

1 Chapter 5
I TEXAS SPRUHV6C-July 2014—Revised July 2018

INSTRUMENTS
Assembler Directives

Assembler directives supply data to the program and control the assembly process. Assembler directives
enable you to do the following:

» Assemble code and data into specified sections

* Reserve space in memory for uninitialized variables

» Control the appearance of listings

e Initialize memory

» Assemble conditional blocks

» Define global variables

» Specify libraries from which the assembler can obtain macros
» Examine symbolic debugging information

This chapter is divided into two parts: the first part (Section 5.1 through Section 5.11) describes the
directives according to function, and the second part (Section 5.12) is an alphabetical reference.

Topic Page
5.1 DIr€CHIVES SUIMMIAIY .euuinieiteueueuanae e eeeuanee e e eeaea s e e aeeaenen e e aeeaenenanreaeaeaenenrnns 64
5.2 Directives that Define SECLIONSuiuiiiii ittt e e e e e anns 68
5.3 Directives that Initialize ValUESc.ciiiiiiiiii e 69
5.4 Directives that Perform Alignment and RESErve SPaceccveveiiiiiiiiiiiiiiiiiniiieieans 72
5.5 Directives that Format the OUtpUt LiStiNgS «.uvueuieiiieieiiiiiiiie i vaeeeeeenees 73
5.6 Directives that Reference Other FileSiuiuiiiiiiiiiiiiiiiie e e aes 74
5.7 Directives that Enable Conditional ASSEMDBIYouieiiiiiiiiiii e 75
5.8 Directives that Define UNion or StruCture TYPESuuiuieieiuiuinieiereiteniarereaeeensnranes 75
5.9 Directives that Define ENUMeErated TYPeSt ettt eeeat e e anaeeeaeenes 76
5.10 Directives that Define Symbols at Assembly TiMe.....ccciiiiiiiiiiiiiiii e, 76
5.11 MiSCEIANEOUS DIlECHIVES . e utueueuenen it ieieeuenee e teaeeen e et eenenan e reaeeaenansareaeaenenennens 77
5.12 Dir€CtIVES REfEIENCE. .ttt ittt ettt a e e e et e a e e eeaenenes 78

SPRUHV6C-July 2014—-Revised July 2018 Assembler Directives 63

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

Directives Summary

13 TEXAS

INSTRUMENTS

www.ti.com

5.1 Directives Summary

Table 5-1 through Table 5-15 summarize the assembler directives.

Besides the assembler directives documented here, the PRU software tools support the following

directives:

* Macro directives are discussed in Chapter 6; they are not discussed in this chapter.

» The C compiler uses directives for symbolic debugging. Unlike other directives, symbolic debugging
directives are not used in most assembly language programs. Appendix A discusses these directives;
they are not discussed in this chapter.

Labels and Comments Are Not Shown in Syntaxes

NOTE:

Most source statements that contain a directive can also contain a label and a comment.

Labels begin in the first column (only labels and comments can appear in the first column),
and comments must be preceded by a semicolon, or an asterisk if the comment is the only

element in the line. To improve readability, labels and comments are not shown as part of

the directive syntax here. See the detailed description of each directive for using labels with

directives.

Table 5-1. Directives that Control Section Use

Mnemonic and Syntax Description See
.bss symbol, size in bytes|, alignment Reserves size bytes in the .bss (uninitialized data) section .bss topic
[, bank offset]]
.data Assembles into the .data (initialized data) section .data topic
.sect "section name" Assembles into a named (initialized) section .sect topic
text Assembles into the .text (executable code) section .text topic
symbol .usect "section name", size in bytes Reserves size bytes in a named (uninitialized) section .usect topic
[, alignment], bank offset]]
Table 5-2. Directives that Affect Unused Section Elimination
Mnemonic and Syntax Description See
.retain "section name" Instructs the linker to include the current or specified section in the .retain topic
linked output file, regardless of whether the section is referenced or
not
.retainrefs "section name" Instructs the linker to include any data object that references the .retain topic
current or specified section.
Table 5-3. Directives that Initialize Values (Data and Memory)
Mnemonic and Syntax Description See
.bits value[, ..., value,] Initializes one or more successive bits in the current section .bits topic
.byte value,], ... , value,] Initializes one or more successive bytes in the current section .byte topic
.char value,], ... , value,] Initializes one or more successive bytes in the current section .char topic
.cstring {expr,|"string,"}[,... , {expr,|"string,"}] Initializes one or more text strings .string topic
.double valuey[, ..., value,] Initializes one or more 64-bit, IEEE double-precision, floating-point .double topic
constants
field value][, size] Initializes a field of size bits (1-32) with value field topic
float value,], ..., value,] Initializes one or more 32-bit, IEEE single-precision, floating-point float topic
constants
.half valuey[, ..., value,] Initializes one or more 16-bit integers (halfword) .half topic
.int value,], ..., value,] Initializes one or more 32-bit integers .int topic
.long value,|, ... , value,] Initializes one or more 32-bit integers .long topic
.short value,|, ..., value,] Initializes one or more 16-bit integers (halfword) .short topic

64 Assembler Directives

SPRUHV6C-July 2014—-Revised July 2018
Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS

INSTRUMENTS

www.ti.com

Directives Summary

Table 5-3. Directives that Initialize Values (Data and Memory) (continued)

Mnemonic and Syntax Description See

.string {expr,|"string;"}[,... , {expr,|"string,"}] Initializes one or more text strings .string topic

.ubyte value], ..., value] Initializes one or more successive unsigned bytes in the current .ubyte topic
section

.uchar valuey[, ..., value,] Initia_llizes one or more successive unsigned bytes in the current .uchar topic
section

.uhalf value,], ..., value,] Initializes one or more unsigned 16-bit integers (halfword) .uhalf topic

.uint value,], ..., value,] Initializes one or more unsigned 32-bit integers .uint topic

.ulong value,], ..., value,] Initializes one or more unsigned 32-bit integers .long topic

.ushort value,[, ..., value,] Initializes one or more unsigned 16-bit integers (halfword) .short topic

.uword value,|, ..., value,] Initializes one or more unsigned 32-bit integers .uword topic

.word value,|, ..., value,] Initializes one or more 32-bit integers .word topic

Table 5-4. Directives that Perform Alignment and Reserve Space
Mnemonic and Syntax Description See
.align [size in bytes] Aligns the SPC on a boundary specified by size in bytes, which .align topic

.bes size

.space size

must be a power of 2; defaults to byte boundary

Reserves size bytes in the current section; a label points to the end .bes topic

of the reserved space

Reserves size bytes in the current section; a label points to the .space topic

beginning of the reserved space

Table 5-5. Directives that Format the Output Listing

Mnemonic and Syntax

Description

See

.drlist
.drnolist
fclist
fcnolist

Enables listing of all directive lines (default)
Suppresses listing of certain directive lines

Allows false conditional code block listing (default)
Suppresses false conditional code block listing

.drlist topic
.drnolist topic
fclist topic
fenolist topic

length [page length] Sets the page length of the source listing .length topic
list Restarts the source listing list topic
.mlist Allows macro listings and loop blocks (default) .mlist topic
.mnolist Suppresses macro listings and loop blocks .mnolist topic
.nolist Stops the source listing .nolist topic
.option option, [, option, , . . . Selects output listing options; available options are A, B, H, M, N, .option topic
O, R, T,W, and X
.page Ejects a page in the source listing .page topic
.sslist Allows expanded substitution symbol listing .sslist topic
.ssnolist Suppresses expanded substitution symbol listing (default) .ssnolist topic
.tab size Sets tab to size characters .tab topic
title "string" Prints a title in the listing page heading title topic
.width [page width] Sets the page width of the source listing .width topic
Directives that Reference Other Files
Mnemonic and Syntax Description See
.copy ["Ifilename["] Includes source statements from another file .copy topic
.include ["]filename["] Includes source statements from another file .include topic
.mlib ["Ifilename["] Specifies a macro library from which to retrieve macro definitions .mlib topic
SPRUHV6C-July 2014—-Revised July 2018 Assembler Directives 65

Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

Directives Summary

13 TEXAS
INSTRUMENTS

www.ti.com

Table 5-7. Directives that Affect Symbol Linkage and Visibility

Mnemonic and Syntax

Description

See

.common symbol, size in bytes [, alignment]r
.common symbol, structure tag [, alignment]

.def symboly[, ... , symbol,]

.global symbol,], ... , symbol,]
.ref symbol,[, ... , symbol,]

.symdepend dst symbol name[, src symbol name]

Defines a common symbol for a variable.

Identifies one or more symbols that are defined in the current
module and that can be used in other modules

Identifies one or more global (external) symbols

.common topic
.def topic

.global topic

Identifies one or more symbols used in the current module that are .ref topic

defined in another module
Creates an artificial reference from a section to a symbol

.symdepend topic

.weak symbol name Identifies a symbol used in the current module that is defined in .weak topic
another module
Table 5-8. Directives that Enable Conditional Assembly
Mnemonic and Syntax Description See
.if condition Assembles code block if the condition is true .if topic
.else Assembles code block if the .if condition is false. When using the .if .else topic

.elseif condition
.endif

.loop [count]

.break [end condition]

.endloop

construct, the .else construct is optional.
Assembles code block if the .if condition is false and the .elseif

.elseif topic

condition is true. When using the .if construct, the .elseif construct

is optional.
Ends .if code block

Begins repeatable assembly of a code block; the loop count is
determined by the count.

.endif topic
.loop topic

Ends .loop assembly if end condition is true. When using the .loop .break topic

construct, the .break construct is optional.
Ends .loop code block

.endloop topic

Table 5-9. Directives that Define Structure Types

Mnemonic and Syntax

Description

See

.cstruct
.cunion

.emember
.endenum
.endstruct
.endunion

.enum
.union
.sassign
.struct
.tag

Acts like .struct, but adds padding and alignment like that which is .cstruct topic

done to C structures

Acts like .union, but adds padding and alignment like that which is .cunion topic

done to C unions

Sets up C-like enumerated types in assembly code
Sets up C-like enumerated types in assembly code
Ends a structure definition

Ends a union definition

Sets up C-like enumerated types in assembly code
Begins a union definition

Map a defined structure onto the PRU registers
Begins structure definition

Assigns structure attributes to a label

Section 5.9
Section 5.9
.struct topic

.cunion topic,
.union topic

Section 5.9
.union topic
.sassign topic
.struct topic
.struct topic

Table 5-10. Directives that Define Symbols

Mnemonic and Syntax Description See

.asg ["]character string["], substitution symbol Assigns a character string to substitution symbol. Substitution .asg topic
symbols created with .asg can be redefined.

.define ["]character string["], substitution symbol Assigns a character string to substitution symbol. Substitution .asg topic
symbols created with .define cannot be redefined.

symbol .equ value Equates value with symbol .equ topic

66 Assembler Directives

SPRUHV6C-July 2014—-Revised July 2018
Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS

INSTRUMENTS

www.ti.com

Directives Summary

Table 5-10. Directives that Define Symbols (continued)

Mnemonic and Syntax Description See
.elfsym name, SYM_SIZE(size Provides ELF symbol information .elfsym topic
.eval expression , Performs arithmetic on a numeric substitution symbol .eval topic

substitution symbol

.newblock Undefines local labels .newblock topic
symbol .set value Equates value with symbol .set topic
.unasg symbol Turns off assignment of symbol as a substitution symbol .unasg topic
.undefine symbol Turns off assignment of symbol as a substitution symbol .unasg topic
Table 5-11. Directives that Create or Affect Macros
Mnemonic and Syntax Description See
macname .macro [parameter,][,... , parameter,] Begin definition of macro named macname .macro topic
.endm End macro definition .endm topic
.mexit Go to .endm Section 6.2
.mlib filename Identify library containing macro definitions .mlib topic
.var Adds a local substitution symbol to a macro's parameter list .var topic
Table 5-12. Directives that Control Diagnostics
Mnemonic and Syntax Description See
.emsg string Sends user-defined error messages to the output device; .emsg topic
produces no .obj file
.mmsg string Sends user-defined messages to the output device .mmsg topic
.wmsg string Sends user-defined warning messages to the output device .wmsg topic
Table 5-13. Directives that Perform Assembly Source Debug
Mnemonic and Syntax Description See

.asmfunc Identifies the beginning of a block of code that contains a function .asmfunc topic

.endasmfunc Identifies the end of a block of code that contains a function .endasmfunc
topic

Table 5-14. Directives that Are Used by the Absolute Lister

Mnemonic and Syntax Description See

.setsect Produced by absolute lister; sets a section Chapter 9

.setsym Produced by the absolute lister; sets a symbol Chapter 9

Table 5-15. Directives that Perform Miscellaneous Functions

Mnemonic and Syntax Description See

.cdecls [options ,]"filename"[, "filename2"][, ...] Share C headers between C and assembly code .cdecls topic

.end Ends program .end topic

SPRUHV6C-July 2014—-Revised July 2018 Assembler Directives 67

Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Directives that Define Sections www.ti.com

In addition to the assembly directives that you can use in your code, the C/C++ compiler produces several
directives when it creates assembly code. These directives are to be used only by the compiler; do not
attempt to use these directives.

» DWAREF directives listed in Section A.1

e The .battr directive is used to encode build attributes for the object file.
e The .bound directive is used internally.

» The .comdat directive is used internally.

» The .compiler_opts directive indicates that the assembly code was produced by the compiler, and
which build model options were used for this file.

5.2 Directives that Define Sections

These directives associate portions of an assembly language program with the appropriate sections:

» The .bss directive reserves space in the .bss section for uninitialized variables.

e The .data directive identifies portions of code in the .data section. The .data section usually contains
initialized data.

» The .retain directive can be used to indicate that the current or specified section must be included in
the linked output. Thus even if no other sections included in the link reference the current or specified
section, it is still included in the link.

» The .retainrefs directive can be used to force sections to refer to the specified section.

» The .sect directive defines an initialized named section and associates subsequent code or data with
that section. A section defined with .sect can contain code or data.

* The .text directive identifies portions of code in the .text section. The .text section usually contains
executable code.

» The .usect directive reserves space in an uninitialized named section. The .usect directive is similar to
the .bss directive, but it allows you to reserve space separately from the .bss section.

Chapter 2 discusses these sections in detail.

Example 5-1 shows how you can use sections directives to associate code and data with the proper

sections. This is an output listing; column 1 shows line numbers, and column 2 shows the SPC values.

(Each section has its own program counter, or SPC.) When code is first placed in a section, its SPC

equals 0. When you resume assembling into a section after other code is assembled, the section's SPC

resumes counting as if there had been no intervening code.

The directives in Example 5-1 perform the following tasks:

text initializes words with the values 1, 2, 3, 4, 5, 6, 7, and 8.
.data initializes words with the values 9, 10, 11, 12, 13, 14, 15, and 16.

var_defs initializes words with the values 17 and 18.

.bss reserves 19 bytes.

Xy reserves 20 bytes.

The .bss and .usect directives do not end the current section or begin new sections; they reserve the

specified amount of space, and then the assembler resumes assembling code or data into the current

section.
68 Assembler Directives SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Directives that Define Sections

Example 5-1. Sections Directives

1
2 * Start assembling into the .text section *
3
4 00000000 .text
5 00000000 00000001 -word 1,2
00000004 00000002
6 00000008 00000003 -word 3,4
0000000c 00000004
7
8
9 * Start assembling into the .data section *
10
11 00000000 .data
12 00000000 00000009 .word 9, 10
00000004 0000000A
13 00000008 0000000B -word 11, 12
0000000c 0000000C
14
15
16 * Start assembling into a named, *
17 * initialized section, var_defs *
18
19 00000000 .sect "var_defs"
20 00000000 00000011 -.word 17, 18
00000004 00000012
21
22
23 * Resume assembling into the .data section *
24
25 00000010 .data
26 00000010 0000000D -word 13, 14
00000014 0000000E
27 00000000 .bss sym, 19 ; Reserve space in .bss
28 00000018 00O0000OF -word 15, 16 ; Still in .data
0000001c 00000010
29
30
31 * Resume assembling into the .text section *
32
33 00000010 .text
34 00000010 00000005 -.word 5, 6
00000014 00000006
35 00000000 usym .usect "'xy", 20 ; Reserve space in Xxy
36 00000018 00000007 -.word 7, 8 ; Still in _text

0000001c 00000008

5.3 Directives that Initialize Values

Several directives assemble values for the current section. For example:

» The .byte and .char directives place one or more 8-bit values into consecutive bytes of the current
section. These directives are similar to .word, .int, and .long, except that the width of each value is
restricted to 8 bits.

» The .double directive calculates the double-precision (64-bit) IEEE floating-point representation of one
or more floating-point values and stores them in two consecutive words in the current section. The
.double directive automatically aligns to the double-word boundary.

» The .field directive places a single value into a specified nhumber of bits in the current word. With .field,
you can pack multiple fields into a single word; the assembler does not increment the SPC until a word
is filled. If a field will not fit in the space remaining in the current word, .field will insert zeros to fill the
current word and then place the field in the next word. See the .field topic.

SPRUHV6C-July 2014—-Revised July 2018 Assembler Directives 69

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Directives that Initialize Values www.ti.com

Figure 5-1 shows how fields are packed into a word. Using the following assembled code, notice that
the SPC does not change for the first three fields (the fields are packed into the same word):

1 00000000 60000000 .field 3, 3

2 00000000 64000000 .Field 8, 6

3 00000000 64400000 .field 16, 5

4 00000004 01234000 .field 01234h, 20
5 00000008 00001234 .Field 01234h, 32

Figure 5-1. The .field Directive

field 3,3
313029

[0 11

3 bits

field 8,6
31 282726252423 0

[o1 1001000

6 bits

field 16,5
31 2221201918 0

011001000‘10000

5 bits
field 01234h,20
31302928272625242322212019181716 151413 12 0
00000001001000110100
20 bits

field 01234h,32
31 0

|00000000000000000001001000110100|

» The .float directive calculates the single-precision (32-bit) IEEE floating-point representation of a single
floating-point value and stores it in a word in the current section that is aligned to a word boundary.

e The .half and .short directives place one or more 16-bit values into consecutive 16-bit fields
(halfwords) in the current section. The .half and .short directives automatically align to a short (2-byte)
boundary.

* The .int, .long, and .word directives place one or more 32-bit values into consecutive 32-bit fields
(words) in the current section. The .int, .long, and .word directives automatically align to a word
boundary.

e The .string and .cstring directives place 8-bit characters from one or more character strings into the
current section. The .string and .cstring directives are similar to .byte, placing an 8-bit character in each
consecutive byte of the current section. The .cstring directive adds a NUL character needed by C; the
.string directive does not add a NUL character.

» The .ubyte, .uchar, .uhalf, .uint, .ulong, .ushort, and .uword directives are provided as unsigned
versions of their respective signed directives. These directives are used primarily by the C/C++
compiler to support unsigned types in C/C++.

Directives that Initialize Constants When Used in a .struct/.endstruct Sequence

NOTE: The .bits, .byte, .char, .int, .long, .word, .double, .half, .short, .ubyte, .uchar, .uhalf, .uint,
.ulong, .ushort, .uword, .string, .float, and .field directives do not initialize memory when they
are part of a .struct/ .endstruct sequence; rather, they define a member’s size. For more
information, see the .struct/.endstruct directives.

70 Assembler Directives SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com

Directives that Initialize Values

Figure 5-2 compares the .byte, .char, .short, .int, .long, .float, .double, .word, and .string directives using

the following assembled code:

1 00000000 AA
00000001 BB
00000002 CC
00000004 ABCD
00000006 0000DDDD
0000000a EEEEFFFF
0000000e 0000DDDD
00000012 3FFFFCB9
00000016 3FFFFFF5
0000001a 83A53BS8E
9 0000001e 48
0000001F 65
00000020 6C
00000021 70

oO~NO O WN

Byte

12

16

1a

1e

1f

20

21

-byte OAAh, 0BBh
.char 0CCh
.short 0OABCDh
-word 0DDDDh
-long OEEEEFFFFh
.int 0DDDDh
-Float 1.9999
.double 1.99999
.string "Help"

Figure 5-2. Initialization Directives

Code
7 0
byte 0AAh
7 0
byte OBBh
7 0
.char QCCh
15 0
.short 0ABCDh
31 0
| 0000 | DDDD | word 0DDDDh
31 0
I EEEE | FFFF | long OEEEEFFFFh
31 0
| 0000 | DDDD | it ODDDDh
31 0
| 3FFF | FCBS | float 1.9999
31 0
| 3FFF | FFFG5 I .double 1.99999
31 0
| 83 A5 | 3 B8E I
7 0

.string “Help”

]

70

o — @ I
o

SPRUHV6C-July 2014—-Revised July 2018
Submit Documentation Feedback

Assembler Directives

Copyright © 2014-2018, Texas Instruments Incorporated

71

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Directives that Perform Alignment and Reserve Space www.ti.com

5.4 Directives that Perform Alignment and Reserve Space

These directives align the section program counter (SPC) or reserve space in a section:

» The .align directive aligns the SPC at a 1-byte to 32K-byte boundary. This ensures that the code
following the directive begins on the byte value that you specify. If the SPC is already aligned at the
selected boundary, it is not incremented. Operands for the .align directive must equal a power of 2
between 2° and 2%, inclusive.

Figure 5-3 demonstrates the .align directive. Using the following assembled code:

1 00000000 40000000 -Ffield 2,3

2 00000000 4000000B .field 11, 21

3 .align 2

4 00000004 45 .string "Errcnt"

00000005 72

00000006 72

00000007 63

00000008 6E

00000009 74
5 -align
6 0000000c 04 -byte 4

Figure 5-3. The .align Directive

—— —
_ - Py - -~
S———

=== New SPC = 04h
after assembling
02h oF .align 2 directive

Current =7 bytes| |~]
SPC =03h 04h Y

-
» -~ ” ~
\—’/ \\ -

(a) Result of .align 2

== _ .

08h Y
curent—""———— | | o000
SPC = 0Ah 1 word New SPC = 0Ch
after assembling
.align directive
0Ch ¥

7 ~< 7

~ —_——

—_——

(b) Result of .align without an argument

» The .bes and .space directives reserve a specified number of bytes in the current section. The
assembler fills these reserved byres with 0s. You can reserve a specified number of words by
multiplying the number of bytes by 4.

— When you use a label with .space, it points to the first byte that contains reserved bits.
— When you use a label with .bes, it points to the last byte that contains reserved bits.

72 Assembler Directives SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Directives that Format the Output Listings

Figure 5-4 shows how the .space and .bes directives work for the following assembled code:

1

2 00000000 00000100 -.word 100h, 200h
00000004 00000200

3 00000008 Res_1: .space 17

4 0000001c 000OOO000OF -word 15

5 00000033 Res 2: _bes 20

6 00000034 BA -byte OBAh

Res_1 points to the first byte in the space reserved by .space. Res_2 points to the last byte in the
space reserved by .bes.

Figure 5-4. The .space and .bes Directives

———
_ -~ P
S———

<+— Res_1=08h
17 bytes -
reserved

<+— Res_2 =33h
20 bytes -
reserved

———

—_——

5.5 Directives that Format the Output Listings

These directives format the listing file:

» The .drlist directive causes printing of the directive lines to the listing; the .drnolist directive turns it off
for certain directives. You can use the .drnolist directive to suppress the printing of the following
directives. You can use the .drlist directive to turn the listing on again.

.asg .eval length .mnolist var
.break fclist .mlist .sslist .width
.emsg fcnolist .mmsg .ssnolist .wmsg

» The source code listing includes false conditional blocks that do not generate code. The .fclist and
.fenolist directives turn this listing on and off. You can use the .fclist directive to list false conditional
blocks exactly as they appear in the source code. You can use the .fcnolist directive to list only the
conditional blocks that are actually assembled.

» The .length directive controls the page length of the listing file. You can use this directive to adjust
listings for various output devices.

» The .list and .nolist directives turn the output listing on and off. You can use the .nolist directive to
prevent the assembler from printing selected source statements in the listing file. Use the .list directive
to turn the listing on again.

» The source code listing includes macro expansions and loop blocks. The .mlist and .mnolist directives
turn this listing on and off. You can use the .mlist directive to print all macro expansions and loop
blocks to the listing, and the .mnolist directive to suppress this listing.

SPRUHV6C-July 2014—-Revised July 2018 Assembler Directives 73

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Directives that Reference Other Files www.ti.com

5.6

The .option directive controls certain features in the listing file. This directive has the following
operands:

turns on listing of all directives and data, and subsequent expansions, macros, and blocks.
limits the listing of .byte and .char directives to one line.

limits the listing of .half and .short directives to one line.

turns off macro expansions in the listing.

turns off listing (performs .nolist).

turns on listing (performs .list).

resets the B, H, M, T, and W directives (turns off the limits of B, H, M, T, and W).

limits the listing of .string directives to one line.

limits the listing of .word and .int directives to one line.

produces a cross-reference listing of symbols. You can also obtain a cross-reference listing
by invoking the assembler with the --asm_listing_cross_reference option (see Section 4.3).

XsH4mozzIw>»

The .page directive causes a page eject in the output listing.

The source code listing includes substitution symbol expansions. The .sslist and .ssnolist directives
turn this listing on and off. You can use the .sslist directive to print all substitution symbol expansions
to the listing, and the .ssnolist directive to suppress this listing. These directives are useful for
debugging the expansion of substitution symbols.

The .tab directive defines tab size.
The .title directive supplies a title that the assembler prints at the top of each page.

The .width directive controls the page width of the listing file. You can use this directive to adjust
listings for various output devices.

Directives that Reference Other Files

These directives supply information for or about other files that can be used in the assembly of the current
file:

The .copy and .include directives tell the assembler to begin reading source statements from another
file. When the assembler finishes reading the source statements in the copy/include file, it resumes
reading source statements from the current file. The statements read from a copied file are printed in
the listing file; the statements read from an included file are not printed in the listing file.

The .def directive identifies a symbol that is defined in the current module and that can be used in
another module. The assembler includes the symbol in the symbol table.

The .global directive declares a symbol external so that it is available to other modules at link time.
(For more information about global symbols, see Section 2.6.1). The .global directive does double duty,
acting as a .def for defined symbols and as a .ref for undefined symbols. The linker resolves an
undefined global symbol reference only if the symbol is used in the program. The .global directive
declares a 16-bit symbol.

The .mlib directive supplies the assembler with the name of an archive library that contains macro
definitions. When the assembler encounters a macro that is not defined in the current module, it
searches for it in the macro library specified with .mlib.

The .ref directive identifies a symbol that is used in the current module but is defined in another
module. The assembler marks the symbol as an undefined external symbol and enters it in the object
symbol table so the linker can resolve its definition. The .ref directive forces the linker to resolve a
symbol reference.

The .symdepend directive creates an artificial reference from the section defining the source symbol
name to the destination symbol. The .symdepend directive prevents the linker from removing the
section containing the destination symbol if the source symbol section is included in the output module.

The .weak directive identifies a symbol that is used in the current module but is defined in another
module. It is equivalent to the .ref directive, except that the reference has weak linkage.

74

Assembler Directives SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Directives that Enable Conditional Assembly

5.7 Directives that Enable Conditional Assembly

Conditional assembly directives enable you to instruct the assembler to assemble certain sections of code
according to a true or false evaluation of an expression. Two sets of directives allow you to assemble
conditional blocks of code:

« The .if/.elseif/.else/.endif directives tell the assembler to conditionally assemble a block of code
according to the evaluation of an expression.

.if condition marks the beginning of a conditional block and assembles code
if the .if condition is true.

[.elseif condition] marks a block of code to be assembled if the .if condition is
false and the .elseif condition is true.

.else marks a block of code to be assembled if the .if condition is
false and any .elseif conditions are false.

.endif marks the end of a conditional block and terminates the block.

e The .loop/.break/.endloop directives tell the assembler to repeatedly assemble a block of code
according to the evaluation of an expression.

.loop [count] marks the beginning of a repeatable block of code. The optional
expression evaluates to the loop count.
.break [end condition] tells the assembler to assemble repeatedly when the .break end

condition is false and to go to the code immediately after
.endloop when the expression is true or omitted.

.endloop marks the end of a repeatable block.

The assembler supports several relational operators that are useful for conditional expressions. For more
information about relational operators, see Section 4.8.2.

5.8 Directives that Define Union or Structure Types

These directives set up specialized types for later use with the .tag directive, allowing you to use symbolic
names to refer to portions of a complex object. The types created are analogous to the struct and union
types of the C language.

The .struct, .union, .cstruct, and .cunion directives group related data into an aggregate structure which is
more easily accessed. These directives do not allocate space for any object. Objects must be separately
allocated, and the .tag directive must be used to assign the type to the object.

type .struct ; structure tag definition
X -int
Y -int

T_LEN .endstruct

COORD .tag type ; declare COORD (coordinate)
COORD .space T_LEN ; actual memory allocation
LDR RO, COORD.Y ; load member Y of structure

; COORD into register RO.

The .cstruct and .cunion directives guarantee that the data structure will have the same alignment and
padding as if the structure were defined in analogous C code. This allows structures to be shared between
C and assembly code. See Chapter 13. For .struct and .union, element offset calculation is left up to the
assembler, so the layout may be different than .cstruct and .cunion.

The .sassign directive allows you to map a defined structure onto the PRU registers.

SPRUHV6C-July 2014—-Revised July 2018 Assembler Directives 75

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS

INSTRUMENTS
Directives that Define Enumerated Types www.ti.com
5.9 Directives that Define Enumerated Types

These directives set up specialized types for later use in expressions allowing you to use symbolic names

to refer to compile-time constants. The types created are analogous to the enum type of the C language.

This allows enumerated types to be shared between C and assembly code. See Chapter 13.

See Section 13.2.10 for an example of using .enum.

5.10 Directives that Define Symbols at Assembly Time

Assembly-time symbol directives equate meaningful symbol names to constant values or strings.

» The .asg directive assigns a character string to a substitution symbol. The value is stored in the
substitution symbol table. When the assembler encounters a substitution symbol, it replaces the
symbol with its character string value. Substitution symbols created with .asg can be redefined.

.asg '"10, 20, 30, 40", coefficients
; Assign string to substitution symbol.
-byte coefficients
; Place the symbol values 10, 20, 30, and 40
; into consecutive bytes iIn current section.

» The .define directive assigns a character string to a substitution symbol. The value is stored in the
substitution symbol table. When the assembler encounters a substitution symbol, it replaces the
symbol with its character string value. Substitution symbols created with .define cannot be redefined.

» The .eval directive evaluates a well-defined expression, translates the results into a character string,
and assigns the character string to a substitution symbol. This directive is most useful for manipulating
counters:

.asg 1, X ;o x =1

-loop ; Begin conditional loop.

-byte X*10h ; Store value into current section.
-break X =4 ; Break loop if x = 4.

-eval x+1, x ; Increment x by 1.

-endloop ; End conditional loop.

e The .set and .equ directives set a constant value to a symbol. The symbol is stored in the symbol table
and cannot be redefined; for example:
bval _set 0100h ; Set bval = 0100h

-long bval, bval*2, bval+12
; Store the values 0100h, 0200h, and 010Ch
; into consecutive words in current section.
The .set and .equ directives produce no object code. The two directives are identical and can be used
interchangeably.

e The .unasg directive turns off substitution symbol assignment made with .asg.

» The .undefine directive turns off substitution symbol assignment made with .define.

* The .var directive allows you to use substitution symbols as local variables within a macro.

76 Assembler Directives SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Miscellaneous Directives

5.11 Miscellaneous Directives

These directives enable miscellaneous functions or features:

* The .asmfunc and .endasmfunc directives mark function boundaries. These directives are used with
the compiler --symdebug:dwarf (-g) option to generate debug information for assembly functions.

» The .cdecls directive enables programmers in mixed assembly and C/C++ environments to share C
headers containing declarations and prototypes between C and assembly code.

» The .end directive terminates assembly. If you use the .end directive, it should be the last source
statement of a program. This directive has the same effect as an end-of-file character.

» The .group, .gmember, and .endgroup directives define an ELF group section to be shared by
several sections.

» The .newblock directive resets local labels. Local labels are symbols of the form $n, where n is a
decimal digit. They are defined when they appear in the label field. Local labels are temporary labels
that can be used as operands for jump instructions. The .newblock directive limits the scope of local
labels by resetting them after they are used. See Section 4.7.3 for information on local labels.

These three directives enable you to define your own error and warning messages:

» The .emsg directive sends error messages to the standard output device. The .emsg directive
generates errors in the same manner as the assembler, incrementing the error count and preventing
the assembler from producing an object file.

e The .mmsg directive sends assembly-time messages to the standard output device. The .mmsg
directive functions in the same manner as the .emsg and .wmsg directives but does not set the error
count or the warning count. It does not affect the creation of the object file.

» The .wmsg directive sends warning messages to the standard output device. The .wmsg directive
functions in the same manner as the .emsg directive but increments the warning count rather than the
error count. It does not affect the creation of the object file.

For more information about using the error and warning directives in macros, see Section 6.7.

SPRUHV6C-July 2014—-Revised July 2018 Assembler Directives 77

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Directives Reference www.ti.com

5.12 Directives Reference

The remainder of this chapter is a reference. Generally, the directives are organized alphabetically, one
directive per topic. Related directives (such as .if/.else/.endif), however, are presented together in one
topic.

.align Align SPC on the Next Boundary

Syntax .align [size in bytes]

Description The .align directive aligns the section program counter (SPC) on the next boundary,
depending on the size in bytes parameter. The size can be any power of 2, although
only certain values are useful for alignment. An operand of 1 aligns the SPC on the next
byte boundary, and this is the default if no size in bytes is given. The size in bytes must
equal a power of 2; the value must be between 1 and 32,768, inclusive. The assembler
assembles words containing null values (0) up to the next size in bytes boundary:

1 aligns SPC to byte boundary

2 aligns SPC to halfword boundary

4 aligns SPC to word boundary

8 aligns SPC to doubleword boundary
128 aligns SPC to page boundary

Using the .align directive has two effects:
» The assembler aligns the SPC on an x-byte boundary within the current section.

* The assembler sets a flag that forces the linker to align the section so that individual
alignments remain intact when a section is loaded into memory.

Example This example shows several types of alignment, including .align 2, .align 8, and a default
.align.

1 00000000 04 -byte 4
.align 2
3 00000002 45 .string "Errorcnt”
00000003 72
00000004 72
00000005 6F
00000006 72
00000007 63
00000008 6E
00000009 74

N

.align
0000000c 60000000 -Field
0000000c 6A000000 -Field

.align
0000000c 6A006000 -Field

-align
10 00000010 50000000 -field
11 .align
12 00000014 04 -byte 4

© o0o~NO O b
oo wWwnN 01w

78 Assembler Directives SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.asg/.define/.eval

Syntax

Description

Assign a Substitution Symbol

.asg "character string",substitution symbol
.define "character string" ,substitution symbol
.eval expression,substitution symbol

The .asg and .define directives assign character strings to substitution symbols.
Substitution symbols are stored in the substitution symbol table. The .asg directive can
be used in many of the same ways as the .set directive, but while .set assigns a
constant value (which cannot be redefined) to a symbol, .asg assigns a character string
(which can be redefined) to a substitution symbol.

» The assembler assigns the character string to the substitution symbol.

» The substitution symbol must be a valid symbol name. The substitution symbol is up
to 128 characters long and must begin with a letter. Remaining characters of the
symbol can be a combination of alphanumeric characters, the underscore (_), and
the dollar sign ($).

The .define directive functions in the same manner as the .asg directive, except that
.define disallows creation of a substitution symbol that has the same name as a register
symbol or mnemonic. It does not create a new symbol name space in the assembler,
rather it uses the existing substitution symbol name space. The .define directive is used
to prevent corruption of the assembly environment when converting C/C++ headers. See
Chapter 13 for more information about using C/C++ headers in assembly source.

The .eval directive performs arithmetic on substitution symbols, which are stored in the
substitution symbol table. This directive evaluates the expression and assigns the string
value of the result to the substitution symbol. The .eval directive is especially useful as a
counter in .loop/.endloop blocks.

* The expression is a well-defined alphanumeric expression in which all symbols have
been previously defined in the current source module, so that the result is an
absolute expression.

e The substitution symbol must be a valid symbol name. The substitution symbol is up
to 128 characters long and must begin with a letter. Remaining characters of the
symbol can be a combination of alphanumeric characters, the underscore (), and
the dollar sign ($).

See the .unasg/.undefine topic for information on turning off a substitution symbol.

SPRUHV6C-July 2014—-Revised July 2018 Assembler Directives 79
Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

Example

This example shows how .asg and .eval can be used.

1

2
3
4
5
6
7

8

9
10
11
12
13
14

R ERP PP, R, P P R

00000000 E28DD018

00000004 E28DD018

00000008 00000001

0000000c 00000002

00000010 00000003

00000014 00000004

00000018 00000005

.sslist ; show expanded sub. symbols
; using .asg and .eval

.asg R2, STACKPTR
.asg &, AND

ADD STACKPTR, STACKPTR, 280 AND 255
ADD R2, R2, 280 & 255

ADD STACKPTR, STACKPTR, 280 & 255
ADD R2, R2, 280 & 255

.asg 0, x
-loop 5
.eval x+1, x
-word X
-endloop
.eval x+1,
.eval 0+1, x
-word X
-word 1
.eval x+1,
.eval 1+1,
-word X
-word 2
.eval x+1,
.eval 2+1, x
-word X
-word 3
.eval x+1,
.eval 3+1,
-word X
-word 4
.eval x+1,
.eval 4+1,
-word X
-word 5

X

X X

X

X X

X X

80

Assembler Directives

SPRUHV6C-July 2014—-Revised July 2018
Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.asmfunc/.endasmfunc Mark Function Boundaries

Syntax symbol .asmfunc [stack_usage(num)]
.endasmfunc
Description The .asmfunc and .endasmfunc directives mark function boundaries. These directives
are used with the compiler -g option (--symdebug:dwarf) to allow assembly code
sections to be debugged in the same manner as C/C++ functions.
You should not use the same directives generated by the compiler (see Appendix A) to
accomplish assembly debugging; those directives should be used only by the compiler to
generate symbolic debugging information for C/C++ source files.
The symbol is a label that must appear in the label field.
The .asmfunc directive has an optional parameter, stack_usage, which indicates that the
function may use up to num bytes.
Consecutive ranges of assembly code that are not enclosed within a pair of .asmfunc
and .endasmfunc directives are given a default name in the following format:
$ filename : beginning source line : ending source line $
Example In this example the .asmfunc and .endasmfunc directives are used to mark function
boundaries for the user_func function.
1 00000000 .sect "'.text"
2 _global user_func
3 .align 4
4
5 userfunc: .asmfunc
6 LDI R28, 1
7 MOV R29, R26
8 XIN 0, &R26, 4
9 .endasmfunc
SPRUHV6C-July 2014—-Revised July 2018 Assembler Directives 81

Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS

INSTRUMENTS
Directives Reference www.ti.com
.bits Initialize Bits
Syntax .bits value,][, ..., value,]
Description The .bits directive places one or more values into consecutive bits of the current section.

The .bits directive is similar to the .field directive (see .field topic). However, the .bits
directive does not allow you to specify the number of bits to fill or increment the SPC.

82 Assembler Directives SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS

INSTRUMENTS

www.ti.com Directives Reference

.bss Reserve Space in the .bss Section

Syntax .bss symbol, size in bytes|, alignment]

Description The .bss directive reserves space for variables in the .bss section. This directive is
usually used to allocate space in RAM.

» The symbol is a required parameter. It defines a symbol that points to the first
location reserved by the directive. The symbol name must correspond to the variable
that you are reserving space for.

» The size in bytes is a required parameter; it must be an absolute constant
expression. The assembler allocates size bytes in the .bss section. There is no
default size.

* The alignment is an optional parameter that ensures that the space allocated to the
symbol occurs on the specified boundary. The boundary indicates must be set to a
power of 2 between 2° and 2%, inclusive. If the SPC is already aligned at the
specified boundary, it is not incremented.

For more information about sections, see Chapter 2.

Example In this example, the .bss directive allocates space for two variables, TEMP and ARRAY.
The symbol TEMP points to four bytes of uninitialized space (at .bss SPC = 0). The
symbol ARRAY points to 100 bytes of uninitialized space (at .bss SPC = 04h). Symbols
declared with the .bss directive can be referenced in the same manner as other symbols
and can also be declared external.

1

2 ** Start assembling into the ._text section. **
3

4 00000000 .text

5 00000000 E3A00000 LDI RO, O

6

7

8 *x Allocate 4 bytes in _bss for TEMP. *x
9

10 00000000 var_1: .bss TEMP, 4

11

12

13 ok Still in .text. ok
14

15 00000004 E2801056 ADD R1, RO, 56h

16

17

18

19 ** Allocate 100 bytes in .bss for the symbol **
20 ok named ARRAY. ok
21

22 00000004 .bss ARRAY, 100, 4

23

24

25 ** Assemble more code into .text. **
26

27 0000000c E1AQFOOE JIMP R3.w2

28

29
30 *x Declare external _bss symbols. *x
31
32 .global ARRAY, TEMP
33 -end

SPRUHV6C-July 2014—-Revised July 2018 Assembler Directives 83

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.byte/.ubyte/.char/.uchar Initialize Byte

Syntax .byte value,], ... , value,]
.ubyte value,|, ..., value,]
.char valuey[, ... , value,]
.uchar value|, ... , value,]

Description The .byte, .ubyte, .char, and .uchar directives place one or more values into

consecutive bytes of the current section. A value can be one of the following:

* An expression that the assembler evaluates and treats as an 8-bit signed number

e A character string enclosed in double quotes. Each character in a string represents a
separate value, and values are stored in consecutive bytes. The entire string must be
enclosed in quotes.

The first byte occupies the eight least significant bits of a full 32-bit word. The second

byte occupies bits eight through 15 while the third byte occupies bits 16 through 23. The

assembler truncates values greater than eight bits.

If you use a label, it points to the location of the first byte that is initialized.

When you use these directives in a .struct/.endstruct sequence, they define a member's

size; they do not initialize memory. For more information, see the .struct/.endstruct/.tag

topic.

Example In this example, 8-bit values (10, -1, abc, and a) are placed into consecutive bytes in
memory with .byte. Also, 8-bit values (8, -3, def, and b) are placed into consecutive
bytes in memory with .char. The label STRX has the value Oh, which is the location of
the first initialized byte. The label STRY has the value 6h, which is the first byte
initialized by the .char directive.

1 00000000 -space 100h

2 00000100 OA STRX .byte 10, -1, "abc", "a"
00000101 FF
00000102 61
00000103 62
00000104 63
00000105 61

3 00000106 08 STRY .char 8, -3, "def", "b"
00000107 FD
00000108 64
00000109 65
0000010a 66
0000010b 62

84 Assembler Directives SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.cdecls

Syntax

Syntax

Description

Share C Headers Between C and Assembly Code

Single Line:
.cdecls [options ,] " filename "[, " filename2 "[,...]]
Multiple Lines:
.cdecls [options]
%{
I* *
/* C/C++ code - Typically a list of #includes and a few defines */
[* %/
%0}

The .cdecls directive allows programmers in mixed assembly and C/C++ environments
to share C headers containing declarations and prototypes between the C and assembly
code. Any legal C/C++ can be used in a .cdecls block and the C/C++ declarations cause
suitable assembly to be generated automatically, allowing you to reference the C/C++
constructs in assembly code; such as calling functions, allocating space, and accessing
structure members; using the equivalent assembly mechanisms. While function and
variable definitions are ignored, most common C/C++ elements are converted to
assembly, for instance: enumerations, (non-function-like) macros, function and variable
prototypes, structures, and unions.

The .cdecls options control whether the code is treated as C or C++ code; and how the
.cdecls block and converted code are presented. Options must be separated by
commas; they can appear in any order:

C Treat the code in the .cdecls block as C source code (default).

CPP Treat the code in the .cdecls block as C++ source code. This is the
opposite of the C option.

NOLIST Do not include the converted assembly code in any listing file generated
for the containing assembly file (default).

LIST Include the converted assembly code in any listing file generated for the
containing assembly file. This is the opposite of the NOLIST option.

NOWARN Do not emit warnings on STDERR about C/C++ constructs that cannot
be converted while parsing the .cdecls source block (default).

WARN Generate warnings on STDERR about C/C++ constructs that cannot be
converted while parsing the .cdecls source block. This is the opposite of
the NOWARN option.

In the single-line format, the options are followed by one or more filenames to include.
The filenames and options are separated by commas. Each file listed acts as if #include
"filename" was specified in the multiple-line format.

In the multiple-line format, the line following .cdecls must contain the opening .cdecls
block indicator %{. Everything after the %/{, up to the closing block indicator %}, is
treated as C/C++ source and processed. Ordinary assembler processing then resumes
on the line following the closing %}.

The text within %{ and %} is passed to the C/C++ compiler to be converted into
assembly language. Much of C language syntax, including function and variable
definitions as well as function-like macros, is not supported and is ignored during the
conversion. However, all of what traditionally appears in C header files is supported,
including function and variable prototypes; structure and union declarations; non-
function-like macros; enumerations; and #defines.

SPRUHV6C-July 2014—-Revised July 2018 Assembler Directives 85
Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

Example

The resulting assembly language is included in the assembily file at the point of the
.cdecls directive. If the LIST option is used, the converted assembly statements are
printed in the listing file.

The assembly resulting from the .cdecls directive is treated similarly to a .include file.
Therefore the .cdecls directive can be nested within a file being copied or included. The
assembler limits nesting to ten levels; the host operating system may set additional
restrictions. The assembler precedes the line numbers of copied files with a letter code
to identify the level of copying. An A indicates the first copied file, B indicates a second
copied file, etc.

The .cdecls directive can appear anywhere in an assembly source file, and can occur
multiple times within a file. However, the C/C++ environment created by one .cdecls is
not inherited by a later .cdecls; the C/C++ environment starts new for each .cdecls.

See Chapter 13 for more information on setting up and using the .cdecls directive with C
header files.

In this example, the .cdecls directive is used call the C header.h file.

C header file:

#define WANT_ID 10
#define NAME "John\n"

extern int a_variable;
extern float cvt_integer(int src);

struct myCstruct { int member_a; float member_b; };

enum status_enum { OK = 1, FAILED = 256, RUNNING = 0 };

Source file:
.cdecls C,LIST,"myheader.h"

size: -int $sizeof(myCstruct)
aoffset: .int myCstruct.member_a
boffset: .int myCstruct.member_b
okvalue: .int status_enum.OK
failval: .int status_enum.FAILED

-1f $defined(WANT_ID)
id .cstring NAME

.endif

86

Assembler Directives

SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

Listing File:

1 .cdecls C,LIST,"myheader.h"
A 1 e
A 2 ; Assembly Generated from C/C++ Source Code
A 3 P
A 4
A 5 ; =========== MACRO DEFINITIONS ===========
A 6 .define "10",WANT_ID
A 7 .define """"'John\n""""" ,NAME
A 8
A 9 ; =========== TYPE DEFINITIONS ===========
A 10 status_enum -enum
A 11 00000001 OK .emember 1
A 12 00000100 FAILED .emember 256
A 13 00000000 RUNNING .emember O
A 14 -endenum
A 15
A 16 myCstruct .struct 0,4

17 ; struct size=(8 bytes]|64 bits), alignment=4
A 18 00000000 member_a -Ffield 32

19 int member_a - offset O bytes, size (4 bytes]32 bits)
A 20 00000004 member_b -Field 32

21 ; Float member_b - offset 4 bytes, size (4 bytes|32 bits)
A 22 00000008 -endstruct

23 ; Final size=(8 bytes]64 bits)
A 24
A 25 ; =========== EXTERNAL FUNCTIONS ===========
A 26 -global _cvt_integer
A 27
A 28 ; =========== EXTERNAL VARIABLES ===========
A 29 -global _a variable

2 00000000 00000008 size: .int $sizeof(myCstruct)

3 00000004 00000000 aoffset: .int myCstruct.member_a

4 00000008 00000004 boffset: .int myCstruct.member_b

5 0000000c 00000001 okvalue: .int status_enum.OK

6 00000010 00000100 failval: .int status_enum.FAILED

7 -if $defined(WANT_ID)

8 00000014 0000004A id .cstring NAME

00000015 0000006F
00000016 00000068
00000017 0OOOOOOGE
00000018 0000000A
00000019 00000000

.endif

SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

Assembler Directives

87

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.common

Syntax

Description

Create a Common Symbol

.common symbol,size in bytes|, alignment]

.common symbol,structure tag][, alignment]

The .common directive creates a common symbol in a common block, rather than
placing the variable in a memory section.

This directive is used by the compiler when the --common option is enabled (the default),
which causes uninitialized file scope variables to be emitted as common symbols. The
benefit of common symbols is that generated code can remove unused variables that
would otherwise increase the size of the .bss section. (Uninitialized variables of a size
larger than 32 bytes are separately optimized through placement in separate subsections
that can be omitted from a link.) This optimization happens for C/C++ code by default
unless you use the --common=off compiler option.

* The symbol is a required parameter. It defines a name for the symbol created by this
directive. The symbol name must correspond to the variable that you are reserving
space for.

» The size in bytes is a required parameter; it must be an absolute expression. The
assembler allocates size bytes in the section used for common symbols. There is no
default size.

» A structure tag can be used in place of a size to specify a structure created with the
.struct directive. Either a size or a structure tag is required for this argument.

e The alignment is an optional parameter that ensures that the space allocated to the
symbol occurs on the specified boundary. The boundary must be set to a power of 2
between 2° and 2'%, inclusive. If the SPC is already aligned at the specified boundary,
it is not incremented.

Common symbols are symbols that are placed in the symbol table of an ELF object file.
They represent an uninitialized variable. Common symbols do not reference a section.
(In contrast, initialized variables need to reference a section that contains the initialized
data.) The value of a common symbol is its required alignment; it has no address and
stores no address. While symbols for an uninitialized common block can appear in
executable object files, common symbols may only appear in relocatable object files.
Common symbols are preferred over weak symbols. See the section on the "Symbol
Table" in the System V ABI specification for more about common symbols.

When object files containing common symbols are linked, space is reserved in an
uninitialized section for each common symbol. A symbol is created in place of the
common symbol to refer to its reserved location.

88

Assembler Directives

SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.copyl.include

Syntax

Description

Example 1

Copy Source File

.copy "filename"

.include "filename"

The .copy and .include directives tell the assembler to read source statements from a
different file. The statements that are assembled from a copy file are printed in the
assembly listing. The statements that are assembled from an included file are not printed
in the assembly listing, regardless of the number of .list/.nolist directives assembled.

When a .copy or .include directive is assembled, the assembler:
1. Stops assembling statements in the current source file
2. Assembles the statements in the copied/included file

3. Resumes assembling statements in the main source file, starting with the statement
that follows the .copy or .include directive

The filename is a required parameter that names a source file. It is enclosed in double
guotes and must follow operating system conventions.

You can specify a full pathname (for example, /320tools/filel.asm). If you do not specify
a full pathname, the assembler searches for the file in:

1. The directory that contains the current source file

2. Any directories named with the --include_path assembler option

3. Any directories specified by the PRU_A_DIR environment variable
4. Any directories specified by the PRU_A_DIR environment variable

For more information about the --include_path option and PRU_A_DIR, see Section 4.4.
For more information about PRU_A DIR, see the PRU Optimizing C/C++ Compiler
User's Guide.

The .copy and .include directives can be nested within a file being copied or included.
The assembler limits nesting to 32 levels; the host operating system may set additional
restrictions. The assembler precedes the line numbers of copied files with a letter code
to identify the level of copying. A indicates the first copied file, B indicates a second
copied file, etc.

In this example, the .copy directive is used to read and assemble source statements
from other files; then, the assembler resumes assembling into the current file.

The original file, copy.asm, contains a .copy statement copying the file byte.asm. When
copy.asm assembles, the assembler copies byte.asm into its place in the listing (note
listing below). The copy file byte.asm contains a .copy statement for a second file,
word.asm.

When it encounters the .copy statement for word.asm, the assembler switches to
word.asm to continue copying and assembling. Then the assembler returns to its place
in byte.asm to continue copying and assembling. After completing assembly of byte.asm,
the assembler returns to copy.asm to assemble its remaining statement.

copy.asm byte.asm word.asm
(source file) (first copy file) (second copy file)

.space 29 ** In byte.asm ** In word.asm
.copy "'byte.asm" _byte 32,1+ "A" .word OABCDh, 56q
** Back in original file .copy "‘word.asm"

.string "done" ** Back in byte.asm
-byte 67h + 3q

SPRUHV6C-July 2014—-Revised July 2018 Assembler Directives 89
Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

Listing file:
1 00000000
2
A 1
A 2 0000001d 20
0000001e 42
A 3
B 1
B 2 00000020 0000ABCD
00000024 0000002E
A
A 00000028 6A

g s wo b

00000029 64
0000002a 6F
0000002b 6E
0000002c 65

B

**

**

**

-Space 29

.copy "'byte.asm"
In byte.asm

-byte 32,1+ "A"

.copy "‘word.asm"
In word.asm
-word OABCDh, 56q

Back in byte.asm
-byte 67h + 3q

Back in original file

.string "done™

Example 2 In this example, the .include directive is used to read and assemble source statements
from other files; then, the assembler resumes assembling into the current file. The
mechanism is similar to the .copy directive, except that statements are not printed in the
listing file.

include.asm byte2.asm word2.asm
(source file) (first copy file) (second copy file)
.space 29 ** In byte2.asm ** In word2.asm
-include "byte2_asm" _byte 32,1+ "A" -word OABCDh, 56q
-include
** Back in original file "word2.asm"
** Back in byte2.asm
.string "done"
-byte 67h + 3q
Listing file:
1 00000000 -space 29
2 -include "byte2.asm"
3
4 ** Back in original file
5 00000029 64 .string "done"
0000002a 6F
0000002b 6E
0000002c 65
90 Assembler Directives SPRUHV6C-July 2014—Revised July 2018

Copyright © 2014-2018, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.cstruct/.cunion/.endstruct/.endunion/.tag Declare C Structure Type

Syntax

Description

Example

[stag] .cstruct|.cunion [expr]

[mem,] element [expr,]
[mem,] element [expr,]

[mem,] .tag stag [expr.]
[mem,] element [expry]
[size] .endstruct|.endunion
label .tag stag

The .cstruct and .cunion directives have been added to support ease of sharing of
common data structures between assembly and C code. The .cstruct and .cunion
directives can be used exactly like the existing .struct and .union directives except that
they are guaranteed to perform data layout matching the layout used by the C compiler
for C struct and union data types.

In particular, the .cstruct and .cunion directives force the same alignment and padding as
used by the C compiler when such types are nested within compound data structures.

The .endstruct directive terminates the structure definition. The .endunion directive
terminates the union definition.

The .tag directive gives structure characteristics to a label, simplifying the symbolic
representation and providing the ability to define structures that contain other structures.
The .tag directive does not allocate memory. The structure tag (stag) of a .tag directive
must have been previously defined.

Following are descriptions of the parameters used with the .struct, .endstruct, and .tag
directives:

» The stag is the structure's tag. Its value is associated with the beginning of the
structure. If no stag is present, the assembler puts the structure members in the
global symbol table with the value of their absolute offset from the top of the
structure. The stag is optional for .struct, but is required for .tag.

» The element is one of the following descriptors: .byte, .char, .int, .long, .word,
.double, .half, .short, .string, .float, and .field. All of these except .tag are typical
directives that initialize memory. Following a .struct directive, these directives
describe the structure element's size. They do not allocate memory. A .tag directive
is a special case because stag must be used (as in the definition of stag).

* The expr is an optional expression indicating the beginning offset of the structure.
The default starting point for a structure is 0.

* The expr,, is an optional expression for the number of elements described. This
value defaults to 1. A .string element is considered to be one byte in size, and a .field
element is one bit.

« The mem,, is an optional label for a member of the structure. This label is absolute
and equates to the present offset from the beginning of the structure. A label for a
structure member cannot be declared global.

* The size is an optional label for the total size of the structure.

This example illustrates a structure in C that will be accessed in assembly code.

SPRUHV6C-July 2014—-Revised July 2018 Assembler Directives 91
Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Directives Reference www.ti.com

typedef struct STRUCT1

0 { int i0; /* offset 0 */
; short sO; /* offset 4 */
; } structl; /* size 8, alignment 4 */

typedef struct STRUCT2

{ structl stl; /* offset 0 */
short s1; /* offset 8 */
} struct2; /* size 12, alignment 4 */

The structure will get the following offsets once the C compiler lays out the structure
elements according to the C standard rules:

offsetof(structl, i0)
offsetof(structl, sO)
sizeof(structl) =
offsetof(struct2, sl)
offsetof(struct2, il)
sizeof(struct2) =12

0O whO

Attempts to replicate this structure in assembly using the .struct/.union directives will not
create the correct offsets because the assembler tries to use the most compact arrangement:

structl .struct

i0 -int ; bytes 0-3

sO .short ; bytes 4-5

structllen .endstruct ; size 6, alignment 4
struct2 .struct

stl .tag structl ; bytes 0-5

sl -short ; bytes 6-7

endstruct2 .endstruct size 8, alignment 4

.sect "datal"

-word structl.iO ; 0
-word structl.sO ;4
-word structllen ; 6
.sect "data2"

.word struct2.stl ; 0
-word struct2.sl ; 6
-word endstruct2 ; 8

; The .cstruct/.cunion directives calculate offsets in the same manner as the C compiler. The resulting
; assembly structure can be used to access the elements of the C structure. Compare the difference
; in the offsets of those structures defined via .struct above and the offsets for the C code.

cstructl .cstruct

i0 -int ; bytes 0-3

sO .short ; bytes 4-5

cstructllen _endstruct ; size 8, alignment 4

cstruct2 .cstruct

stl -tag cstructl ; bytes 0-7

sl -short ; bytes 8-9

cendstruct2 _endstruct ; size 12, alignment 4
.sect "data3"

-word cstructl.iO, structl.iO
-word cstructl.sO, structl.sO
.word cstructllen, structllen

© h~ O

.sect "data4"

.word cstruct2.stl, struct2.stl ;
-word cstruct2.sl1, struct2.sl ;8
-word cendstruct2, endstruct2 ; 12

92 Assembler Directives SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.data Assemble Into the .data Section
Syntax .data
Description The .data directive sets .data as the current section; the lines that follow will be

assembled into the .data section. The .data section is normally used to contain tables of
data or preinitialized variables.

For more information about sections, see Chapter 2.

Example In this example, code is assembled into the .data section.
1
2 *x Reserve space in .data. *x
3
4 00000000 .data
5 00000000 .space 0CCh
6
7
8 ** Assemble into .data. *x
9

10 000000cc

11 000000cc FFFFFFFF
12

13

14 000000d0 FF

15

16

Table:

.data
-word -1 ;

.byte OFFh ;

Assemble 32-bit
constant into .data.

Assemble 8-bit
constant into .data.

SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

Assembler Directives

93

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS

INSTRUMENTS
Directives Reference www.ti.com
.double Initialize Double-Precision Floating-Point Value
Syntax .double value, [, ..., value,]
Description The .double directive places the IEEE double-precision floating-point representation of

one or more floating-point values into the current section. Each value must be an
absolute constant expression with an arithmetic type or a symbol equated to an absolute
constant expression with an arithmetic type. Each constant is converted to a floating-
point value in IEEE double-precision 64-bit format. Double-precision floating point
constants are aligned to a double word boundary.

The 64-bit value is stored in the format shown in Figure 5-5.

Figure 5-5. Double-Precision Floating-Point Format

[SEEEEEEEEEEEMMMMMMMMMMMMMMMMMMM M|
31 20 0

|MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMl
31 0

Legend: S =sign
E = exponent (11-bit biased)
M = mantissa (52-bit fraction)

When you use .double in a .struct/.endstruct sequence, .double defines a member's size;
it does not initialize memory. For more information, see the .struct/.endstruct/.tag topic.

Example This example shows the .double directive.
1 00000000 C5308B2A .double -2.0e25
00000004 2C280291
2 00000008 40180000 .double 6
0000000c 00000000
3 00000010 407C8000 .double 456

00000014 00000000

94 Assembler Directives SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.drlist/.drnolist

Syntax

Description

Example

Control Listing of Directives

drlist
.drnolist

Two directives enable you to control the printing of assembler directives to the listing file:

The .drlist directive enables the printing of all directives to the listing file.

The .drnolist directive suppresses the printing of the following directives to the listing

file. The .drnolist directive has no affect within macros.

e .asg » fcnolist e .ssnolist
e .break e .mlist e var

e .emsg * .mmsg e .wmsg

e .eval e .mnolist

o fclist e .sslist

By default, the assembler acts as if the .drlist directive had been specified.

This example shows how .drnolist inhibits the listing of the specified directives.

Source file:
.asg 0, x
.loop 2
.eval X+1, X
-endloop
-drnolist
.asg 1, x
-loop 3
-eval x+1, X
-endloop
Listing file:
3 .asg 0, X
4 -loop 2
5 .eval X+1, X
6 -endloop
1 -eval 0+1, X
1 .eval 1+1, X
7
8 -drnolist
12 -loop 3
13 -eval x+1, X
14 -endloop

SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

Assembler Directives

95

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS

INSTRUMENTS
Directives Reference www.ti.com
.elfsym ELF Symbol Information
Syntax .elfsym name, SYM_SIZE(size)
Description The .elfsym directive provides additional information for symbols in the ELF format. This

directive is designed to convey different types of information, so the type, data pair is
used to represent each type. Currently, this directive only supports the SYM_SIZE type.

SYM_SIZE indicates the allocation size (in bytes) of the symbol indicated by name.

Example This example shows the use of the ELF symbol information directive.

.sect " _examp"

.alignment 4

-elfsym ex_sym, SYM_SIZE(4)
ex_sym:

-word 0

96 Assembler Directives SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Directives Reference

.emsg/.mmsg/.wmsg Define Messages

Syntax .emsg string
.mmsg string

.wmsg string

Description These directives allow you to define your own error and warning messages. When you
use these directives, the assembler tracks the number of errors and warnings it
encounters and prints these numbers on the last line of the listing file.

The .emsg directive sends an error message to the standard output device in the same
manner as the assembler. It increments the error count and prevents the assembler from
producing an object file.

The .mmsg directive sends an assembly-time message to the standard output device in
the same manner as the .emsg and .wmsg directives. It does not, however, set the error
or warning counts, and it does not prevent the assembler from producing an object file.

The .wmsg directive sends a warning message to the standard output device in the
same manner as the .emsg directive. It increments the warning count rather than the
error count, however. It does not prevent the assembler from producing an object file.

Example This example sends the message ERROR -- MISSING PARAMETER to the standard
output device.

Source file:

MSG_EX -.macro parml
-if $symlen(parml) = 0
.emsg "ERROR -- MISSING PARAMETER™

.else
ADD parml, r7, r8
.endif
-endm
MSG_EX RO
MSG_EX
Listing file:
1 MSG_EX .macro parml
2 -if $symlen(parml) = 0O
3 .emsg "ERROR -- MISSING PARAMETER"
4 .else
5 ADD parml, r7, r8
6 .endif
7 -endm
8
9 00000000 MSG_EX RO
1 -if $symlen(parml) = 0O
1 .emsg "ERROR -- MISSING PARAMETER"
1 .else
1 00000000 E0870008 ADD RO, r7, r8
1 .endif
10
11 00000004 MSG_EX
1 -if $symlen(parml) = 0O
1 .emsg "ERROR -- MISSING PARAMETER"
*H&&*x USER ERROR ***** _ : ERROR -- MISSING PARAMETER
1 .else
1 ADD parml, r7, r8
1 .endif
1 Error, No Warnings
SPRUHV6C-July 2014—-Revised July 2018 Assembler Directives 97

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

In addition, the following messages are sent to standard output by the assembler:

*** ERROR! line 11: ***** USER ERROR ***** _ : ERROR -- MISSING PARAMETER
.emsg "ERROR -- MISSING PARAMETER" 11

1 Error, No Warnings
Errors in source - Assembler Aborted

.end End Assembly
Syntax .end
Description The .end directive is optional and terminates assembly. The assembler ignores any
source statements that follow a .end directive. If you use the .end directive, it must be
the last source statement of a program.
This directive has the same effect as an end-of-file character. You can use .end when
you are debugging and you want to stop assembling at a specific point in your code.
Ending a Macro
NOTE: Do not use the .end directive to terminate a macro; use the .endm macro
directive instead.
Example This example shows how the .end directive terminates assembly. Any source statements
that follow the .end directive are ignored by the assembler.
Source file:
.text
-bss dflag, 1
-bss array, 100
.copy globals.def
LDI r4, array
LDl r5, offst
LDl r3, dflag
LBBO &r0, r4, r5, 4
SBBO &r0, r3, 0, 4
-end
LDl r4, offst
SBBO &rO, r4, O, 4
98 Assembler Directives SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

fclist/.fcnolist

Syntax

Description

Example

Control Listing of False Conditional Blocks

fclist
fcnolist

Two directives enable you to control the listing of false conditional blocks:

The fclist directive allows the listing of false conditional blocks (conditional blocks that
do not produce code).

The .fcnolist directive suppresses the listing of false conditional blocks until a .fclist
directive is encountered. With .fcnolist, only code in conditional blocks that are actually
assembled appears in the listing. The .if, .elseif, .else, and .endif directives do not
appear.

By default, all conditional blocks are listed; the assembler acts as if the .fclist directive
had been used.

This example shows the assembly language and listing files for code with and without
the conditional blocks listed.

Source file:
AAA .set 1
BBB .set O
.fclist
i AAA
ADD RO, RO, 1024
.else
ADD RO, RO, 1024*10
.endif
-Fcnolist
S V.V
ADD RO, RO, 1024
.else
ADD RO, RO, 1024*10
.endif
Listing file:
1 00000001 AAA .set 1
2 00000000 BBB .set O
3 -Ffclist
4
5 S .V.V.\
6 00000000 E2800B0O1 ADD RO, RO, 1024
7 .else
8 ADD RO, RO, 1024*10
9 .endif
10
11 -Ffcnolist
12
14 00000004 E2800B01 ADD RO, RO, 1024

SPRUHV6C-July 2014—-Revised July 2018

Assembler Directives

Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

99

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

field

Syntax

Description

Example

Initialize Field

field value], size in bits]

The .field directive initializes a multiple-bit field within a single word (32 bits) of memory.
This directive has two operands:

» The value is a required parameter; it is an expression that is evaluated and placed in
the field. The value must be absolute.

* The size in bits is an optional parameter; it specifies a number from 1 to 32, which is
the number of bits in the field. The default size is . If you specify a value that cannot
fit in size in bits, the assembler truncates the value and issues a warning message.
For example, .field 3,1 causes the assembler to truncate the value 3 to 1; the
assembler also prints the message:

*** WARNING! line 21: WO00l1l: Field value truncated to 1
.field 3, 1

Successive .field directives pack values into the specified number of bits starting at the
current word. Fields are packed starting at the most significant part of the word, moving
toward the least significant part as more fields are added. If the assembler encounters a
field size that does not fit into the current word, it writes out the word, and begins
packing fields into the next word.

The .field directive is similar to the .bits directive (see the .bits topic). However, the .bits
directive does not allow you to specify the number of bits in the field and does not
automatically increment the SPC when a word boundary is reached.

Use the .align directive to force the next .field directive to begin packing a new word.
If you use a label, it points to the byte that contains the specified field.

When you use .field in a .struct/.endstruct sequence, .field defines a member's size; it
does not initialize memory. For more information, see the .struct/.endstruct/.tag topic.

This example shows how fields are packed into a word. The SPC does not change until
a word is filled and the next word is begun.

1

2 *x Initialize a 14-bit field. **
3

4 00000000 2AF00000 .field OABCh, 14

5

6

7 holad Initialize a 5-bit field holad
8 *x in the same word. *x
9

10 00000000 2AF14000 L_F: .field O0Ah, 5

11

12

13 holad Write out the word. holad
14

15 .align 4

16

17

18 *x Initialize a 4-bit field. **
19 ** This fields starts a new word. **
20
21 00000004 COO00000 x: .Field O0Ch, 4
22
23
24 *x 32-bit relocatable field *x
25 holad in the next word. holad
26
27 00000008 00000004* -Ffield x
28

100 Assembler Directives

SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS

INSTRUMENTS
www.ti.com Directives Reference

29

30 ** Initialize a 32-bit field. **

31

32 0000000c 00004321 .Field 04321h, 32

Figure 5-6 shows how the directives in this example affect memory.
Figure 5-6. The .field Directive
Word Code
0 field OABCh, 14
3130292827 262524232221201918 0

00101010111 100

14-bit field
0 field 00Ah, 5

31 181716151413 0
00101010111 100(01010

5-bit field .align 4
1 field 00Ch, 5
31302928 0
1100
N
4-bit field
5 field x
31 0

000OO0OO0OOOO0OOOOOOOOOOOOOOOOOOOOOOOTTO

3 field 04321, 32
31 0

000OO0OO0OOOO0OOOOOOOOOOOOO1TOOOO1T1TOOOO1

SPRUHV6C-July 2014—-Revised July 2018 Assembler Directives

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

101

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS

INSTRUMENTS
Directives Reference www.ti.com
float Initialize Single-Precision Floating-Point Value
Syntax float value], ..., value,]
Description The .float directive places the IEEE single-precision floating-point representation of a

single floating-point constant into a word in the current section. The value must be an
absolute constant expression with an arithmetic type or a symbol equated to an absolute
constant expression with an arithmetic type. Each constant is converted to a floating-
point value in IEEE single-precision 32-bit format.

The 32-bit value is stored exponent byte first, most significant byte of fraction second,
and least significant byte of fraction third, in the format shown in Figure 5-7.

Figure 5-7. Single-Precision Floating-Point Format

[SEEEEEEEEMMMMMMMMMMMMMMMMMMMMMM M
31 23 0

value = ('1)SX (1 0+ mantissa) X (2)exponent-127

Legend: S =sign (1 bit)
E = exponent (8-bit biased)
M = mantissa (23-bit fraction)

When you use .float in a .struct/.endstruct sequence, .float defines a member's size; it
does not initialize memory. For more information, see the .struct/.endstruct/.tag topic.

Example Following are examples of the .float directive:
1 00000000 E9045951 .float -1.0e25
2 00000004 40400000 .float 3
3 00000008 42F60000 .Float 123
102 Assembler Directives SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.global/.def/.ref

Syntax

Description

Example

Identify Global Symbols

.global symbol,], ..., symbol,]
.def symboly[, ... , symbol,]
.ref symbol,[, ... , symbol,]

Three directives identify global symbols that are defined externally or can be referenced
externally:

The .def directive identifies a symbol that is defined in the current module and can be
accessed by other files. The assembler places this symbol in the symbol table.

The .ref directive identifies a symbol that is used in the current module but is defined in
another module. The linker resolves this symbol's definition at link time.

The .global directive acts as a .ref or a .def, as needed.

A global symbol is defined in the same manner as any other symbol; that is, it appears
as a label or is defined by the .set, .equ, .bss, or .usect directive. If a global symbol is
defined more than once, the linker issues a multiple-definition error. (The assembler can
provide a similar multiple-definition error for local symbols.) The .ref directive always
creates a symbol table entry for a symbol, whether the module uses the symbol or not;
.global, however, creates an entry only if the module actually uses the symbol.

A symbol can be declared global for either of two reasons:

» If the symbol is not defined in the current module (which includes macro, copy, and
include files), the .global or .ref directive tells the assembler that the symbol is
defined in an external module. This prevents the assembler from issuing an
unresolved reference error. At link time, the linker looks for the symbol's definition in
other modules.

» If the symbol is defined in the current module, the .global or .def directive declares
that the symbol and its definition can be used externally by other modules. These
types of references are resolved at link time.

This example shows four files. The filel.Ist and file2.Ist refer to each other for all symbols
used; file3.Ist and file4.Ist are similarly related.

The filel.Ist and file3.Ist files are equivalent. Both files define the symbol INIT and
make it available to other modules; both files use the external symbols X, Y, and Z. Also,
filel.Ist uses the .global directive to identify these global symbols; file3.Ist uses .ref and
.def to identify the symbols.

The file2.Ist and file4.Ist files are equivalent. Both files define the symbols X, Y, and Z
and make them available to other modules; both files use the external symbol INIT. Also,
file2.Ist uses the .global directive to identify these global symbols; file4.Ist uses .ref and
.def to identify the symbols.

filel.Ist

; Global symbol defined in this file
-global INIT
; Global symbols defined in file2.lst
-global X, Y, Z
00000000 INIT:
00000000 E2800056 ADD RO, RO, 56h
00000004 000000001 .word X

PO OWO~NOOOMWNEPE

R

-end

SPRUHV6C-July 2014—-Revised July 2018 Assembler Directives 103
Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

file2.Ist
1
2
3
4
5
6
7
8

9
10
11
12

file3.Ist

R
RPOOWONOUNWNLER

filed.Ist

1
2
3
4
5
6
7
8
9
10
11
12

; Global symbols defined in this file

-global X, Y, zZ

; Global symbol defined in filel.lst

00000001 X:

00000002
00000003
00000000 00000000!

N <

; Global

; Global

00000000 INIT:

00000000 E2800056
00000004 00000000!

00000001
00000002
00000003
00000000 00000000!

N < X

; Global

; Global

-global INIT
.set 1
.set 2
.set 3
-word INIT
.end

symbols defined in this file

.def INIT

symbol defined in file4._Ist

.ref X, Y, Z

ADD RO, RO, 56
-word X
.end

symbols defined in this file

.def X, Y, Z

symbol defined in file3.Ist

.ref INIT
.set 1
.set 2
.set 3
-word INIT
.end

104

Assembler Directives

SPRUHV6C-July 2014—-Revised July 2018

Copyright © 2014-2018, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Directives Reference

.group/.gmember/.endgroup Define Common Data Section

Syntax .group group section name group type
.gmember section name

.endgroup

Description Three directives instruct the assembler to make certain sections members of an ELF
group section (see the ELF specification for more information on group sections).

The .group directive begins the group declaration. The group section name designates
the name of the group section. The group type designates the type of the group. The
following types are supported:

0x0 Regular ELF group
0x1 COMDAT ELF group

Duplicate COMDAT (common data) groups are allowed in multiple modules; the linker
keeps only one. Creating such duplicate groups is useful for late instantiation of C++
templates and for providing debugging information.

The .gmember directive designates section name as a member of the group.
The .endgroup directive ends the group declaration.

SPRUHV6C-July 2014—-Revised July 2018 Assembler Directives 105

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.half/.short/.uhalf/.ushort |Initialize 16-Bit Integers

Syntax

Description

Example

.half value,], ..., value,]
.short value,], ... , value,]
.uhalf value,[, ..., value,]

.ushort value|, ... , value,]

The .half and .short directives place one or more values into consecutive halfwords in
the current section. A value can be either:

* An expression that the assembler evaluates and treats as a 16-bit signed or unsigned
number

» A character string enclosed in double quotes. Each character in a string represents a
separate value and is stored alone in the least significant eight bits of a 16-bit field,
which is padded with 0s.

The assembler truncates values greater than 16 bits.

If you use a label with .half or .short, it points to the location where the assembler places
the first byte.

These directives perform a halfword (16-bit) alignment before data is written to the
section. This guarantees that data resides on a 16-bit boundary.

When you use .half or .short in a .struct/.endstruct sequence, they define a member's
size; they do not initialize memory. For more information, see the .struct/.endstruct/.tag
topic.

In this example, .half is used to place 16-bit values (10, -1, abc, and a) into consecutive
halfwords in memory; .short is used to place 16-bit values (8, -3, def, and b) into
consecutive halfwords in memory. The label STRN has the value 100ch, which is the
location of the first initialized halfword for .short.

1 00000000 .space 100h * 16
2 00001000 OOOA -half¥ 10, -1, "abc", "a*
00001002 FFFF
00001004 0061
00001006 0062
00001008 0063
0000100a 0061
3 0000100c 0008 STRN .short 8, -3, "def", "b"
0000100e FFFD
00001010 0064
00001012 0065
00001014 0066
00001016 0062

106 Assembler Directives

SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.if/.elseif/.else/.endif Assemble Conditional Blocks

Syntax .if condition
[.elseif condition]
[-else]
.endif
Description These directives provide conditional assembly:
The .if directive marks the beginning of a conditional block. The condition is a required
parameter.
« If the expression evaluates to true (nonzero), the assembler assembles the code that
follows the expression (up to a .elseif, .else, or .endif).
» If the expression evaluates to false (0), the assembler assembles code that follows a
.elseif (if present), .else (if present), or .endif (if no .elseif or .else is present).
The .elseif directive identifies a block of code to be assembled when the .if expression is
false (0) and the .elseif expression is true (nonzero). When the .elseif expression is
false, the assembler continues to the next .elseif (if present), .else (if present), or .endif
(if no .elseif or .else is present). The .elseif is optional in a conditional block, and more
than one .elseif can be used. If an expression is false and there is no .elseif, the
assembler continues with the code that follows a .else (if present) or a .endif.
The .else directive identifies a block of code that the assembler assembles when the .if
expression and all .elseif expressions are false (0). The .else directive is optional in the
conditional block; if an expression is false and there is no .else statement, the assembler
continues with the code that follows the .endif. The .elseif and .else directives can be
used in the same conditional assembly block.
The .endif directive terminates a conditional block.
See Section 4.8.2 for information about relational operators.
Example This example shows conditional assembly:
1 00000001 SYM1 .set 1
2 00000002 SYM2 .set 2
3 00000003 SYM3 .set 3
4 00000004 SYM4 .set 4
5
6 If 4: if SYM4 = SYM2 * SYM2
7 00000000 04 .byte SYM4 ; Equal values
8 .else
9 -byte SYM2 * SYM2 ; Unequal values
10 .endif
11
12 I 5: -if SYM1 <= 10
13 00000001 OA -byte 10 ; Less than / equal
14 .else
15 -byte SYM1 ; Greater than
16 .endif
17
18 If 6: .if SYM3 * SYM2 I= SYM4 + SYM2
19 -byte SYM3 * SYM2 ; Unequal value
20 .else
21 00000002 08 -byte SYM4 + SYM4 ; Equal values
22 -endif
23
24 If£7: Lif SYM1 = SYM2
25 .byte SYM1
26 .elseif SYM2 + SYM3 = 5
27 00000003 05 .byte SYM2 + SYM3
28 -endif
SPRUHV6C-July 2014—-Revised July 2018 Assembler Directives 107

Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.int/.unint/.long/.ulong/.word/.uword Initialize 32-Bit Integers

Syntax

Description

Example 1

Example 2

Example 3

.int value,|, ..., value,]
.uint value,], ..., value, |
long value,], ..., value,]
.ulong value,|, ... , value,]
.word value,], ..., value,]
.uword value,[, ..., value,]

The .int, .unint, .word, and .uword directives place one or more values into consecutive
words in the current section. Each value is placed in a 32-bit word by itself and is aligned
on a word boundary. A value can be either:

» An expression that the assembler evaluates and treats as a 32-bit signed or unsigned
number

» A character string enclosed in double quotes. Each character in a string represents a
separate value and is stored alone in the least significant eight bits of a 32-bit field,
which is padded with Os.

A value can be either an absolute or a relocatable expression. If an expression is
relocatable, the assembler generates a relocation entry that refers to the appropriate
symbol; the linker can then correctly patch (relocate) the reference. This allows you to
initialize memory with pointers to variables or labels.

If you use a label with these directives, it points to the first word that is initialized.

When you use these directives in a .struct/.endstruct sequence, they define a member's
size; they do not initialize memory. See the .struct/.endstruct/.tag topic.

This example uses the .int directive to initialize words.

1 00000000 .space 73h

2 00000000 .bss PAGE, 128

3 00000080 .bss SYMPTR, 4

4 00000074 E3A00056 INST: LDI RO, 056h

5 00000078 OOO0000A .int 10, SYMPTR, -1, 35 + "a", INST, "abc"

0000007c 00000080-
00000080 FFFFFFFF
00000084 00000084
00000088 00000074*
0000008c 00000061
00000090 00000062
00000094 00000063

This example shows how the .long directive initializes words. The symbol DAT1 points to
the first word that is reserved.

1 00000000 OO0O0OABCD DAT1: .long OABCDh, “A® + 100h, "g*, "o"
00000004 00000141
00000008 00000067
0000000c 0000006F
2 00000010 00000000* -long DAT1, OAABBCCDDh
00000014 AABBCCDD
3 00000018 DAT2:

In this example, the .word directive is used to initialize words. The symbol WORDX
points to the first word that is reserved.

1 00000000 00000C80 WORDX: .word 3200, 1 + "AB", -OAFh, *X*
00000004 00004242
00000008 FFFFFF51
0000000c 00000058

108 Assembler Directives

SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

length/.width

Set Listing Page Size

Syntax Jength [page length]
.width [page width]
Description Two directives allow you to control the size of the output listing file.
The .length directive sets the page length of the output listing file. It affects the current
and following pages. You can reset the page length with another .length directive.
» Default length: 60 lines. If you do not use the .length directive or if you use the
.length directive without specifying the page length, the output listing length defaults
to 60 lines.
e Minimum length: 1 line
* Maximum length: 32 767 lines
The .width directive sets the page width of the output listing file. It affects the next line
assembled and the lines following. You can reset the page width with another .width
directive.
e Default width: 132 characters. If you do not use the .width directive or if you use the
.width directive without specifying a page width, the output listing width defaults to
132 characters.
e Minimum width: 80 characters
* Maximum width: 200 characters
The width refers to a full line in a listing file; the line counter value, SPC value, and
object code are counted as part of the width of a line. Comments and other portions of a
source statement that extend beyond the page width are truncated in the listing.
The assembler does not list the .width and .length directives.
Example The following example shows how to change the page length and width.
*x Page length = 65 lines *x
*x Page width = 85 characters *x
-length 65
.width 85
*x Page length = 55 lines *x
*x Page width = 100 characters *x
-length 55
.width 100
SPRUHV6C-July 2014—-Revised July 2018 Assembler Directives 109

Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

Jlist/.nolist

Syntax

Description

Example

Start/Stop Source Listing

Jist

.nolist

Two directives enable you to control the printing of the source listing:
The .list directive allows the printing of the source listing.

The .nolist directive suppresses the source listing output until a .list directive is
encountered. The .nolist directive can be used to reduce assembly time and the source
listing size. It can be used in macro definitions to suppress the listing of the macro
expansion.

The assembler does not print the .list or .nolist directives or the source statements that
appear after a .nolist directive. However, it continues to increment the line counter. You
can nest the .list/.nolist directives; each .nolist needs a matching .list to restore the
listing.

By default, the source listing is printed to the listing file; the assembler acts as if the .list
directive had been used. However, if you do not request a listing file when you invoke
the assembler by including the --asm_listing option on the command line (see

Section 4.3), the assembler ignores the .list directive.

This example shows how the .copy directive inserts source statements from another file.
The first time this directive is encountered, the assembler lists the copied source lines in
the listing file. The second time this directive is encountered, the assembler does not list
the copied source lines, because a .nolist directive was assembled. The .nolist, the
second .copy, and the .list directives do not appear in the listing file. Also, the line
counter is incremented, even when source statements are not listed.

Source file:

.copy *‘copy2.asm™
* Back in original file

NOP

-nolist

.copy "'copy2.asm"

-list
* Back in original file

.string ""Done™
Listing file:

1 .copy "'copy2.asm”

A 1 * In copy2.asm (copy file)
A 2 00000000 00000020 .word 32, 1 + A"

00000004 00000042

2 * Back in original file
3 00000008 E1A00000 NOP

7 * Back in original file
8 00000014 44 .string "Done"

00000015 6F
00000016 6E
00000017 65

110 Assembler Directives

SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Directives Reference

Jloop/.endloop/.break Assemble Code Block Repeatedly

Syntax Joop [count]
.break [end-condition]
.endloop
Description Three directives allow you to repeatedly assemble a block of code:
The .loop directive begins a repeatable block of code. The optional count operand, if
used, must be a well-defined integer expression. The count indicates the number of
loops to be performed (the loop count). If count is omitted, it defaults to 1024. The loop
will be repeated count number of times, unless terminated early by a .break directive.
The optional .break directive terminates a .loop early. You may use .loop without using
.break. The .break directive terminates a .loop only if the end-condition expression is true
(evaluates to nonzero). If the optional end-condition operand is omitted, it defaults to
true. If end-condition is true, the assembler stops repeating the .loop body immediately;
any remaining statements after .break and before .endloop are not assembled. The
assembler resumes assembling with the statement after the .endloop directive. If end-
condition is false (evaluates to 0), the loop continues.
The .endloop directive marks the end of a repeatable block of code. When the loop
terminates, whether by a .break directive with a true end-condition or by performing the
loop count number of iterations, the assembler stops repeating the loop body and
resumes assembling with the statement after the .endloop directive.
Example This example illustrates how these directives can be used with the .eval directive. The
code in the first six lines expands to the code immediately following those six lines.
1 -eval 0,x
2 COEF .loop
3 -word X*100
4 -eval x+1, X
5 -break X =6
6 -endloop
1 00000000 00000000 .word 0*100
1 -eval 0+1, X
1 -break 1=6
1 00000004 00000064 .word 1*100
1 -eval 1+1, X
1 -break 2=6
1 00000008 000000C8 .word 2*100
1 -eval 2+1, X
1 -break 3=6
1 0000000c 0000012C .word 3*100
1 -eval 3+1, X
1 -break 4 =6
1 00000010 00000190 .word 4*100
1 -eval 4+1, X
1 -break 5=6
1 00000014 000001F4 .word 5*100
1 -eval 5+1, x
1 -break 6 =6

SPRUHV6C-July 2014—-Revised July 2018
Submit Documentation Feedback

Assembler Directives

Copyright © 2014-2018, Texas Instruments Incorporated

111

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS

INSTRUMENTS
Directives Reference www.ti.com
.macro/.endm Define Macro
Syntax macname .macro [parameter,|, ... , parameter,]]

model statements or macro directives

.endm

Description The .macro and .endm directives are used to define macros.

You can define a macro anywhere in your program, but you must define the macro
before you can use it. Macros can be defined at the beginning of a source file, in an
.include/.copy file, or in a macro library.

macname names the macro. You must place the name in the source
statement's label field.

.macro identifies the source statement as the first line of a macro
definition. You must place .macro in the opcode field.

[parameters] are optional substitution symbols that appear as operands for the

.macro directive.

model statements are instructions or assembler directives that are executed each
time the macro is called.

macro directives are used to control macro expansion.
.endm marks the end of the macro definition.

Macros are explained in further detail in Chapter 6.

112 Assembler Directives SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.mlib

Syntax

Description

Example

Define Macro Library

.mlib "filename"

The .mlib directive provides the assembler with the filename of a macro library. A macro
library is a collection of files that contain macro definitions. The macro definition files are
bound into a single file (called a library or archive) by the archiver.

Each file in a macro library contains one macro definition that corresponds to the name

of the file. The filename of a macro library member must be the same as the macro

name, and its extension must be .asm. The filename must follow host operating system

conventions; it can be enclosed in double quotes. You can specify a full pathname (for
example, c:\320tools\macs.lib). If you do not specify a full pathname, the assembler

searches for the file in the following locations in the order given:
1. The directory that contains the current source file
2. Any directories hamed with the --include_path assembler option

3. Any directories specified by the PRU_A_DIR environment variable
4. Any directories specified by the PRU_A_DIR environment variable

See Section 4.4 for more information about the --include_path option.

A .mlib directive causes the assembler to open the library specified by filename and

create a table of the library's contents. The assembler stores names of individual library
members in the opcode table as library entries. This redefines any existing opcodes or
macros with the same name. If one of these macros is called, the assembler extracts the
library entry and loads it into the macro table. The assembler expands the library entry
as it does other macros, but it does not place the source code in the listing. Only macros
called from the library are extracted, and they are extracted only once.

The code creates a macro library that defines two macros, inc4.asm and dec4.asm. The

file inc4.asm contains the definition of inc4 a

nd dec4.asm contains the definition of dec4.

inc4.asm

dec4.asm

* Macro for incrementing
inc4 _.macro regl, reg2, reg3, reg4
Add regl, regl, 1
ADD reg2, reg2, 1
ADD reg3, reg3, 1
ADD reg4, reg4, 1

.endm

SUB regl,
SUB reg2,
SUB reg3,
SUB reg4,
-endm

* Macro for decrementing
dec4 .macro regl, reg2, reg3, reg4

regl, 1
reg2, 1
reg3, 1
regd, 1

Use the archiver to create a macro library:

armar -a mac inc4.asm dec4.asm
ar32 -a mac inc4.asm dec4.asm

Now you can use the .mlib directive to reference the macro library and define the

inc4.asm and dec4.asm macros:

1

2

3 00000000
00000000
00000004
00000008
0000000c

PR RR

a

6 00000010
00000010
00000014
00000018
0000001c

S

E2877001
E2866001
E2855001
E2844001

E2400001
E2411001
E2422001
E2433001

.mlib

; Macro cal

incd
ADD
ADD
ADD
ADD

; Macro cal

dec4
SUB
SUB
SuB
SUB

“mac.lib"
1
R7, R6, R5, R4
R7, R7, 1
R6, R6, 1
R5, R5, 1
R4, R4, 1

1

RO, R1, R2, R3
RO, RO, 1
R1, R1, 1
R2, R2, 1
R3, R3, 1

SPRUHV6C-July 2014—-Revised July 2018
Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

Assembler Directives

113

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.mlist/. mnolist

Start/Stop Macro Expansion Listing

Syntax .mlist
.mnolist

Description Two directives enable you to control the listing of macro and repeatable block
expansions in the listing file:

The .mlist directive allows macro and .loop/.endloop block expansions in the listing file.
The .mnolist directive suppresses macro and .loop/.endloop block expansions in the
listing file.

By default, the assembler behaves as if the .mlist directive had been specified.

See Chapter 6 for more information on macros and macro libraries. See the
loop/.break/.endloop topic for information on conditional blocks.

Example This example defines a macro named STR_3. The first time the macro is called, the
macro expansion is listed (by default). The second time the macro is called, the macro
expansion is not listed, because a .mnolist directive was assembled. The third time the
macro is called, the macro expansion is again listed because a .mlist directive was
assembled.

1 STR_3 .macro P1, P2, P3
2 .string ":pl:", ":ip2:', ":ip3:"
3 -endm
4
5 00000000 STR_3 ™"as", "I'", "am"™ ; Invoke STR_3 macro.
1 00000000 3A .string ":pl:", ":p2:", ":p3:"
00000001 70
00000002 31
00000003 3A
00000004 3A
00000005 70
00000006 32
00000007 3A
00000008 3A
00000009 70
0000000a 33
0000000b 3A
6 -mnolist ; Suppress expansion.
7 0000000c STR_3 ™as™, "I', "am™ ; Invoke STR_3 macro.
8 -mlist ; Show macro expansion.
9 00000018 STR_3 "as", "I, "am" ; Invoke STR_3 macro.
1 00000018 3A .string ":pl:", ":p2:", ":p3:"
00000019 70
0000001a 31
0000001b 3A
0000001c 3A
0000001d 70
0000001e 32
0000001F 3A
00000020 3A
00000021 70
00000022 33
00000023 3A
114 Assembler Directives SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.newblock Terminate Local Symbol Block
Syntax .newblock
Description The .newblock directive undefines any local labels currently defined. Local labels, by
nature, are temporary; the .newblock directive resets them and terminates their scope.
A local label is a label in the form $n, where n is a single decimal digit, or name?, where
name is a legal symbol name. Unlike other labels, local labels are intended to be used
locally, and cannot be used in expressions. They can be used only as operands in 8-bit
jump instructions. Local labels are not included in the symbol table.
After a local label has been defined and (perhaps) used, you should use the .newblock
directive to reset it. The .text, .data, and .sect directives also reset local labels. Local
labels that are defined within an include file are not valid outside of the include file.
See Section 4.7.3 for more information on the use of local labels.
Example 1
2
3
4sign_extend_32_8 _.macro dest, src
5 -newblock
6 MOV dest, src
7 QBBC $1, dest, 7
8 FILL &dest.bl, 3
9%1:
10 -endm
11
12
13 .global sign_extend
14 00000000 sign_extend
15 00000000 sign_extend_32_8 R14, R14.b0
1 -newblock
1 00000000 000000100EQEEE MOV R14, R14.b0
1 00000004 000000C907EEQ2 QBBC $1, R14, 7
1 00000008 0000002EFF012E FILL &R14.b1, 3
1 $1:
16 0000000c 00000020C30000 JMP R3.w2
SPRUHV6C-July 2014—-Revised July 2018 Assembler Directives 115

Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.option Select Listing Options

Syntax

.option option,[, option,,. . .]

Description The .option directive selects options for the assembler output listing. The options must
be separated by commas; each option selects a listing feature. These are valid options:

A

Xs—H4mOozZZTrIw

turns on listing of all directives and data, and subsequent expansions, macros,
and blocks.

limits the listing of .byte and .char directives to one line.

limits the listing of .half and .short directives to one line.

limits the listing of .long directives to one line.

turns off macro expansions in the listing.

turns off listing (performs .nolist).

turns on listing (performs .list).

resets any B, H, M, T, and W (turns off the limits of B, H, M, T, and W).
limits the listing of .string directives to one line.

limits the listing of .word and .int directives to one line.

produces a cross-reference listing of symbols. You can also obtain a cross-
reference listing by invoking the assembler with the --
asm_listing_cross_reference option (see Section 4.3).

Options are not case sensitive.

Example This example shows how to limit the listings of the .byte, .char, .int, long, .word, and
.string directives to one line each.

O©CoO~NOULDS WNPE

10
12
13
14
15

16
17

18

19

20

21

22

** | imit the listing of _byte, .char, .int, .long, **
** _word, and .string directives to 1 line each. **

.option B, W, T

00000000 BD -byte -"C", 0BOh, 5
00000003 BC .char -"D", 0OCOh, 6
00000008 0000000A -int 10, 35 + "a", "abc"
0000001c AABBCCDD -long OAABBCCDDh, 536 + "A*
00000024 0O00015AA .word 5546, 78h
0000002c 45 .string "Extended Registers"
*x Reset the listing options. *x
.option R
0000003e BD -byte -"C", 0BOh, 5

0000003f BO

00000040 05

00000041 BC .char -"D", OCOh, 6
00000042 CO

00000043 06

00000044 00OOOO0O0A -int 10, 35 + "a", "abc"
00000048 00000084

0000004c 00000061

00000050 00000062

00000054 00000063

00000058 AABBCCDD .long OAABBCCDDh, 536 + “A-
0000005c 00000259

00000060 O00015AA -word 5546, 78h

00000064 00000078

00000068 45 .string "Extended Registers"

00000069 78

116 Assembler Directives

SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.page
Syntax

Description

Example

0000006a 74
0000006b 65
0000006¢c 6E
0000006d 64
0000006e 65
0000006F 64
00000070 20
00000071 52
00000072 65
00000073 67
00000074 69
00000075 73
00000076 74
00000077 65
00000078 72
00000079 73

Eject Page in Listing

.page

The .page directive produces a page eject in the listing file. The .page directive is not

printed in the source listing, but the assembler increments the line counter when it
encounters the .page directive. Using the .page directive to divide the source listing into

logical divisions improves program readability.

This example shows how the .page directive causes the assembler to begin a new page

of the source listing.

Source file:

Source file (generic)
.title "**** pPage Directive Example ****"
-page

Listing file:

PRU Assembler Version Xx.xx Day Time Year

Copyright (c) 2012-2014 Texas Instruments Incorporated
**** pPage Directive Example ****

2 :

3 ;

4 ; .
PRU Assembler Version X.XX Day Time Year
Copyright (c) 2012-2014 Texas Instruments Incorporated
**** page Directive Example ****

No Errors, No Warnings

PAGE

PAGE

SPRUHV6C-July 2014—-Revised July 2018
Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

Assembler Directives

117

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.retain / .retainrefs

Syntax

Description

Conditionally Retain Sections In Object Module Output

.retain["section name"]

.retainrefs["section name"]

The .retain directive indicates that the current or specified section is not eligible for
removal via conditional linking. You can also override conditional linking for a given
section with the --retain linker option. You can disable conditional linking entirely with the
--unused_section_elimination=off linker option.

The .retainrefs directive indicates that any sections that refer to the current or specified
section are not eligible for removal via conditional linking.

The section name identifies the section. If the directive is used without a section name, it
applies to the current initialized section. If the directive is applied to an uninitialized
section, the section name is required. The section name must be enclosed in double
guotes. A section name can contain a subsection name in the form section
name:subsection name.

The linker assumes that all sections by default are eligible for removal via conditional
linking. (However, the linker does automatically retain the .reset section.) The .retain
directive is useful for overriding this default conditional linking behavior for sections that
you want to keep included in the link, even if the section is not referenced by any other
section in the link. For example, you could apply a .retain directive to an interrupt
function that you have written in assembly language, but which is not referenced from
any normal entry point in the application.

118

Assembler Directives

SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.sassign

Syntax

Description

Example

Map defined structure onto PRU registers

label .sassign structure, start_reg, structure

The .sassign directive is used to map a defined structure onto the PRU registers.
The label is a symbol that can be used to reference the mapped structure.

The start_reg is the first register into which the structure is placed. An .sassign directive
can begin at any register boundary. If the structure requires more than 32 bits of storage,
multiple registers will be used as needed. Some structures require specific alignments
due to how their fields are arranged within the structure. The assembler generates an
error if the structure alignment requirements can not be met with the specified starting
register. This argument is required.

The structure is a type of structure that has been previously defined using the .struct
directive. This argument is required.

This example causes a structure of type MyStruct to be mapped to registers beginning at
R4. The structure can be referenced with the MyNamel label.

MyNamel .sassign R4, MyStruct

SPRUHV6C-July 2014—-Revised July 2018 Assembler Directives 119
Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.sect

Syntax

Description

Example

Assemble Into Named Section

.sect " section name "
.sect " section name " [{RO|RW}] [,{ALLOC|NOALLOC}]

The .sect directive defines a named section that can be used like the default .text and
.data sections. The .sect directive sets section name to be the current section; the lines
that follow are assembled into the section name section.

The section name identifies the section. The section name must be enclosed in double
guotes. A section name can contain a subsection name in the form section name :
subsection name. See Chapter 2 for more information about sections.

The sections can be marked read-only (RO) or read-write (RW). Also, the sections can
be marked for allocation (ALLOC) or no allocation (NOALLOC). These attributes can be
specified in any order, but only one attribute from each set can be selected. RO conflicts
with RW, and ALLOC conflicts with NOALLOC. If conflicting attributes are specified the
assembler generates an error, for example:

"t.asm", ERROR! at line 1:[EO000] Attribute RO cannot be combined with attr RW
.sect "illegal_sect",RO,RW

This example defines two special-purpose sections, Sym_Defs and Vars, and assembles
code into them.

1

2 *x Begin assembling into .text section. *x
3

4 00000000 -text

5 00000000 E3A00078 LDI RO, 78h

6 00000004 E2801078 ADD R1, RO, 78h

7

8 *x Begin assembling into Sym_Defs section. *x
9

10 00000000 .sect '"Sym_Defs"

11 00000000 3D4CcccD -float 0.05 ; Assembled into Sym_Defs
12 00000004 OOOOOOAA X: -word OAAh ; Assembled into Sym_Defs
13 00000008 E2833028 ADD R3, R3, 28h ; Assembled into Sym Defs
14

15 *x Begin assembling into Vars section. *x
16

17 00000000 .sect "Vars"

18 00000010 WORD_LEN .set 16

19 00000020 DWORD_LEN .set WORD_LEN * 2

20 00000008 BYTE_LEN .set WORD_LEN / 2

21

22 *x Resume assembling into .text section. *x
23

24 00000008 -text

25 00000008 E2802042 ADD R2, RO, 42h ; Assembled into .text

26 0000000c 03 -byte 3, 4 ; Assembled into .text

0000000d 04

27

28 *x Resume assembling into Vars section. *x
29

30 00000000 .sect "Vars"
31 00000000 000DO0O0O .field 13, WORD_LEN
32 00000000 OOODOAOO .field OAh, BYTE_LEN

33 00000004 00000008 .field 10q, DWORD_LEN

120 Assembler Directives

SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.set/.equ

Syntax

Description

Example

Define Assembly-Time Constant

symbol .set value

symbol .equ value

The .set and .equ directives equate a constant value to a .set symbol. The symbol can
then be used in place of a value in assembly source. This allows you to equate

meaningful names with constants and other values. The .set and .equ directives are

identical and can be used interchangeably.
» The symbol is a label that must appear in the label field.

e The value must be a well-defined expression, that is, all symbols in the expression
must be previously defined in the current source module.

Undefined external symbols and symbols that are defined later in the module cannot be
used in the expression. If the expression is relocatable, the symbol to which it is
assigned is also relocatable.

The value of the expression appears in the object field of the listing. This value is not

part of the actual object code and is not written to the output file.

Symbols defined with .set or .equ can be made externally visible with the .def or .global
directive (see the .global/.def/.ref topic). In this way, you can define global absolute
constants.

This example shows how symbols can be assigned with .set and .equ.

O©CoO~NOOUDS WNPE

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

00000000

00000004

00000008

0000000c

** Equate symbol AUX_R1 to register AR1 and use
*x it instead of the register.

00000001 AUX_R1 .set R1
E3A01056 LDI AUX_R1, 56h

**

e

*x Set symbol index to an integer expression.
** and use it as an immediate operand.

e

*x

00000035 INDEX -equ 100/2 +3
E2810035 ADD RO, AUX_R1, INDEX

** Set symbol SYMTAB to a relocatable expression.

** and use it as a relocatable operand.

*x

**

0000000A LABEL .word 10
00000009 SYMTAB .set LABEL + 1

*x Set symbol NSYMS equal to the symbol INDEX

**

*x INDEX and use it as you would INDEX. *x
00000035 NSYMS .set INDEX
00000035 .word NSYMS

SPRUHV6C-July 2014—-Revised July 2018
Submit Documentation Feedback

Assembler Directives

Copyright © 2014-2018, Texas Instruments Incorporated

121

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.space/.bes

Syntax

Description

Example

Reserve Space

[label] .space size in bytes
[label] .bes size in bytes

The .space and .bes directives reserve the number of bytes given by size in bytes in the
current section and fill them with Os. The section program counter is incremented to
point to the word following the reserved space.

When you use a label with the .space directive, it points to the firstbyte reserved. When
you use a label with the .bes directive, it points to the last byte reserved.

This example shows how memory is reserved with the .space and .bes directives.

1
2 *x Begin assembling into the .text section. *x
3
4 00000000 .text
5
6
7 *x Reserve OF0 bytes in the .text section. *x
8
9 00000000 .space OFOh
10 000000f0 00000100 .word 100h, 200h
000000f4 00000200
11
12 *x Begin assembling into the .data section. *x
13
14 00000000 .data
15 00000000 49 .string "In .data"
00000001 6E
00000002 20
00000003 2E
00000004 64
00000005 61
00000006 74
00000007 61
16
17 ** Reserve 100 bytes in the .data section; RES_1 **
18 *x points to the first byte that contains *x
19 ** reserved bytes. **
20
21 00000008 RES_1: .space 100
22 0000006c 0O0O0O000OF -.word 15
23 00000070 00000008 .word RES_1
24
25
26 ** Reserve 20 bits in the .data section; RES 2 **
27 *x points to the last byte that contains *x
28 ** reserved bytes. **
29
30 00000087 RES_2: _.bes 20
31 00000088 00000036 .word 36h
32 0000008c 00000087 .word RES_2

122 Assembler Directives

SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.sslist/.ssnolist

Syntax

Description

Example

Control Listing of Substitution Symbols

.sslist

.ssnolist

Two directives allow you to control substitution symbol expansion in the listing file:

The .sslist directive allows substitution symbol expansion in the listing file. The
expanded line appears below the actual source line.

The .ssnolist directive suppresses substitution symbol expansion in the listing file.

By default, all substitution symbol expansion in the listing file is suppressed; the
assembler acts as if the .ssnolist directive had been used.

Lines with the pound (#) character denote expanded substitution symbols.

This example shows code that, by default, suppresses the listing of substitution symbol
expansion, and it shows the .sslist directive assembled, instructing the assembler to list

substitution symbol code expansion.

Default listing file without .sslist:

.asg rl4, ARGl
.asg r15, ARG2

00000000 0000005100EE02

00000004 0O00OO00O0101EEEE

$1:
-newblock

O~NO O WNPE

9 00000008 0000005100EF02
10 0000000c OOOOO00101EFEF
11 00000010
12 00000010 00000020C30000

Listing with .sslist added:

1 .sslist

2

3 .asg rl4, ARGl

4 .asg ri15, ARG2

5

6 00000000 000O0005100EE02
#

7 00000004 0O00OO0O00101EEEE
#

8%1:

9 -newblock

10

11 00000008 0000005100EF02
#

12 0000000c 0O0OOOO0101EFEF
#

13 00000010
14 00000010 00000020C30000

$1:

$1:

QBEQ $1, ARG1, O
ADD rl4, ARG1, 1

QBEQ $1, ARG2, O
ADD ri15, ARG2, 1

JMP r3.w2

QBEQ $1, ARG1, O
QBEQ $1, rl4, O
ADD ri14, ARG1, 1
ADD ril4, ri4, 1

QBEQ $1, ARG2, O
QBEQ $1, ri5, 0
ADD ri5, ARG2, 1
ADD ri5, ri5, 1

JMP r3.w2

SPRUHV6C-July 2014—-Revised July 2018
Submit Documentation Feedback

Assembler Directives

Copyright © 2014-2018, Texas Instruments Incorporated

123

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.string/.cstring

Syntax

Description

Examp

le

Initialize Text

.string {expr, | "string,"} [, ... , {expr, | "string,"}]
.cstring {expr, | "string,"} [, ... , {expr, | "string,"}]

The .string and .cstring directives place 8-bit characters from a character string into the
current section. The expr or string can be one of the following:

* An expression that the assembler evaluates and treats as an 8-bit signed number.

» A character string enclosed in double quotes. Each character in a string represents a
separate value, and values are stored in consecutive bytes. The entire string must be
enclosed in quotes.

The .cstring directive adds a NUL character needed by C; the .string directive does not
add a NUL character. In addition, .cstring interprets C escapes (\\ \a \b \f \n \r \t \v
\<octal>).

The assembler truncates any values that are greater than eight bits. Operands must fit
on a single source statement line.

If you use a label, it points to the location of the first byte that is initialized.

When you use .string and .cstring in a .struct/.endstruct sequence, the directive only
defines a member's size; it does not initialize memory. For more information, see the
.struct/.endstruct/.tag topic.

In this example, 8-bit values are placed into consecutive bytes in the current section.

1 00000000 41 Str_Ptr: .string "ABCD"
00000001 42
00000002 43
00000003 44
2 00000004 41 .string 41h, 42h, 43h, 44h
00000005 42
00000006 43
00000007 44
3 00000008 41 .string "Austin', "Houston", "Dallas"
00000009 75
0000000a 73
0000000b 74
0000000c 69
0000000d 6E
0000000e 48
0000000F 6F
00000010 75
00000011 73
00000012 74
00000013 6F
00000014 6E
00000015 44
00000016 61
00000017 6C
00000018 6C
00000019 61
0000001a 73
4 0000001b 30 .string 36 + 12

124

Assembler Directives

SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.struct/.endstruct/.tag Declare Structure Type

Syntax

Description

[stag] .struct [expr]

[mem,] element [expr,]
[mem,] element [expr,]

[mem,] .tag stag [expr.]

[memy,] element [expry]
[size] .endstruct
label tag stag

The .struct directive assigns symbolic offsets to the elements of a data structure
definition. This allows you to group similar data elements together and let the assembler
calculate the element offset. This is similar to a C structure or a Pascal record. The
.struct directive does not allocate memory; it merely creates a symbolic template that can
be used repeatedly.

The .endstruct directive terminates the structure definition.

The .tag directive gives structure characteristics to a label, simplifying the symbolic
representation and providing the ability to define structures that contain other structures.
The .tag directive does not allocate memory. The structure tag (stag) of a .tag directive
must have been previously defined.

Following are descriptions of the parameters used with the .struct, .endstruct, and .tag
directives:

e The stag is the structure's tag. Its value is associated with the beginning of the
structure. If no stag is present, the assembler puts the structure members in the
global symbol table with the value of their absolute offset from the top of the
structure. The stag is optional for .struct, but is required for .tag.

* The expr is an optional expression indicating the beginning offset of the structure.
The default starting point for a structure is 0.

e The mem,, is an optional label for a member of the structure. This label is absolute
and equates to the present offset from the beginning of the structure. A label for a
structure member cannot be declared global.

» The element is one of the following descriptors: .byte, .char, .int, .long, .word,
.double, .half, .short, .string, .float, .field, and .tag. All of these except .tag are typical
directives that initialize memory. Following a .struct directive, these directives
describe the structure element's size. They do not allocate memory. The .tag
directive is a special case because stag must be used (as in the definition of stag).

* The expr,, is an optional expression for the number of elements described. This
value defaults to 1. A .string element is considered to be one byte in size, and a .field
element is one bit.

» The size is an optional label for the total size of the structure.

Directives that Can Appear in a .struct/.endstruct Sequence

NOTE: The only directives that can appear in a .struct/.endstruct sequence are
element descriptors, conditional assembly directives, and the .align
directive, which aligns the member offsets on word boundaries. Empty
structures are illegal.

SPRUHV6C-July 2014—-Revised July 2018 Assembler Directives 125
Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Directives Reference www.ti.com

The following examples show various uses of the .struct, .tag, and .endstruct directives.

Example 1 1REAL_REC .struct
2 00000000000000 NOM .int
3 00000000000004 DEN -int
4 00000000000008 REAL_LEN .endstruct
5
6 00000000 -bss REAL, REAL_LEN
7

8 00000000 000000240000E0! LDI rO, REAL

9 00000004 O00OO0O0OF1042084 LBBO &r4, rO, REAL_REC.DEN,
$sizeof(REAL_REC.DEN)

10 00000008 OOOOOOOOE4E1E1l ADD r1, ri, r4

11
Example 2 12CPLX_REC .struct
13 00000000000000 REALI -tag REAL_REC
14 00000000000008 IMAGI -tag REAL_REC
15 00000000000010 CPLX_LEN .endstruct
16
17 00000000 .data
18COMPLEX .tag CPLX_REC
19 00000000 COMPLEX .space CPLX_LEN
20
21 0000000c -text
22

23 0000000c 000000240000EO0! LDI rO, COMPLEX.REALI_NOM
24 00000010 OOOO0OOF1002084 LBBO &r4, rO0, 0, $sizeof(REAL_REC.NOM)
25 00000014 OOOOOOOOE4E1E1 ADD ri1, ri, r4

26

Example 3 27 .struct
28
29 00000000000000 X .int
30 00000000000004 Y .int
31 00000000000008 Z .int
32
33 0000000000000C -endstruct
34

Example 4 35BIT_REC .struct
36 00000000000000 STREAM .string 64
37 00000000000040 BIT7 -Field 7
38 00000000000040 BIT8 -Field 9
39 00000000000042 BIT10 -field 10
40 00000000000044 X_INT -int
41 00000000000048 BIT_LEN _endstruct
42

126 Assembler Directives SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.symdepend/.weak

Syntax

Description

Affect Symbol Linkage and Visibility

.symdepend dst symbol name[, src symbol name]

.weak symbol name

These directives are used to affect symbol linkage and visibility.

The .symdepend directive creates an artificial reference from the section defining src
symbol name to the symbol dst symbol name. This prevents the linker from removing the
section containing dst symbol name if the section defining src symbol name is included
in the output module. If src symbol name is not specified, a reference from the current
section is created.

The .weak directive identifies a symbol that is used in the current module but is defined
in another module. The linker resolves this symbol's definition at link time. Instead of
including a weak symbol in the output file's symbol table by default (as it would for a
global symbol), the linker only includes a weak symbol in the output of a "final" link if the
symbol is required to resolve an otherwise unresolved reference. See Section 2.6.2 for
details about how weak symbols are handled by the linker.

The .weak directive is equivalent to the .ref directive, except that the reference has weak
linkage.

A global symbol is defined in the same manner as any other symbol; that is, it appears
as a label or is defined by the .set, .equ, .bss, or .usect directive. If a global symbol is
defined more than once, the linker issues a multiple-definition error. (The assembler can
provide a similar multiple-definition error for local symbols.) The .weak directive always
creates a symbol table entry for a symbol, whether the module uses the symbol or not;
.symdepend, however, creates an entry only if the module actually uses the symbol.

A symbol can be declared global in either of the following ways:

» If the symbol is not defined in the current module (which includes macro, copy, and
include files), use the .weak directive to tell the assembler that the symbol is defined
in an external module. This prevents the assembler from issuing an unresolved
reference error. At link time, the linker looks for the symbol's definition in other
modules.

» If the symbol is defined in the current module, use the .symdepend directive to
declare that the symbol and its definition can be used externally by other modules.
These types of references are resolved at link time.

For example, use the .weak and .set directives in combination as shown in the following
example, which defines a weak absolute symbol "ext_addr_sym":

-weak ext_addr_sym
ext_addr_sym .set 0x12345678

If you assemble such assembly source and include the resulting object file in the link, the
"ext_addr_sym" in this example is available as a weak absolute symbol in a final link. It
is a candidate for removal if the symbol is not referenced elsewhere in the application.

SPRUHV6C-July 2014—-Revised July 2018 Assembler Directives 127
Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

.tab

Syntax

Description

Example

Define Tab Size

.tab size

The .tab directive defines the tab size. Tabs encountered in the source input are
translated to size character spaces in the listing. The default tab size is eight spaces.

In this example, each of the lines of code following a .tab statement consists of a single
tab character followed by an NOP instruction.

Source file:

; default tab size

NOP
NOP
NOP

-tab 4

NOP
NOP
NOP

.tab 16

NOP
NOP
NOP

Listing file:

[uy
COWOO~NUPAWNEPE

12
13
14

00000000
00000004
00000008

0000000c
00000010
00000014

00000018
0000001c
00000020

E1A00000
E1A00000
E1A00000

E1A00000
E1A00000
E1A00000

E1A00000
E1A00000
E1A00000

; default tab size

NOP
NOP
NOP

NOP
NOP
NOP

NOP
NOP
NOP

128 Assembler Directives

SPRUHV6C-July 2014—-Revised July 2018
Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

text Assemble Into the .text Section
Syntax text
Description The .text sets .text as the current section. Lines that follow this directive will be
assembled into the .text section, which usually contains executable code. The section
program counter is set to 0 if nothing has yet been assembled into the .text section. If
code has already been assembled into the .text section, the section program counter is
restored to its previous value in the section.
The .text section is the default section. Therefore, at the beginning of an assembly, the
assembler assembles code into the .text section unless you use a .data or .sect directive
to specify a different section.
For more information about sections, see Chapter 2.
Example This example assembles code into the .text and .data sections.
;** Begin assembling into .text section. **
.text
ADD rO, rO, ri
;** Begin assembling into .data section. **
.data
.byte 0OCh, 0Dh
;** Resume assembling into .text section.**
.text
.string "QuUIT"
SPRUHV6C-July 2014—-Revised July 2018 Assembler Directives 129

Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

Directives Reference

13 TEXAS
INSTRUMENTS

www.ti.com

title

Syntax

Description

Examp

le

Define Page Title

title "string"

The .title directive supplies a title that is printed in the heading on each listing page. The
source statement itself is not printed, but the line counter is incremented.

The string is a quote-enclosed title of up to 64 characters. If you supply more than 64
characters, the assembler truncates the string and issues a warning:

*** WARNING! line x: WO0O1l: String is too long - will be truncated

The assembler prints the title on the page that follows the directive and on subsequent
pages until another .title directive is processed. If you want a title on the first page, the
first source statement must contain a .title directive.

In this example, one title is printed on the first page and a different title is printed on
succeeding pages.

Source file:
.title "**** Fast Fourier Transforms ****"

-title "**** Floating-Point Routines ****"

-page

Listing file:

PRU Assembler Version X.xX Day Time Year

Copyright (c) 2012-2014 Texas Instruments Incorporated
**** Fast Fourier Transforms **** PAGE 1

2 :
3 ;
4 ; .
PRU Assembler Version X.XX Day Time Year
Copyright (c) 2012-2014 Texas Instruments Incorporated
**** Eloating-Point Routines **** PAGE 2

No Errors, No Warnings

130

Assembler Directives

SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.union/.endunion/.tag Declare Union Type

Syntax

Description

[stag] .union [expr]

[mem,] element [expr,]
[mem,] element [expr,]

[mem,] .tagstag [expr,]

[memy] element [expry]
[size] .endunion
label tag stag

The .union directive assigns symbolic offsets to the elements of alternate data structure
definitions to be allocated in the same memory space. This enables you to define
several alternate structures and then let the assembler calculate the element offset. This
is similar to a C union. The .union directive does not allocate any memory; it merely
creates a symbolic template that can be used repeatedly.

A .struct definition can contain a .union definition, and .structs and .unions can be
nested.

The .endunion directive terminates the union definition.

The .tag directive gives structure or union characteristics to a label, simplifying the
symbolic representation and providing the ability to define structures or unions that
contain other structures or unions. The .tag directive does not allocate memory. The
structure or union tag of a .tag directive must have been previously defined.

Following are descriptions of the parameters used with the .struct, .endstruct, and .tag
directives:

* The utag is the union's tag. is the union's tag. Its value is associated with the
beginning of the union. If no utag is present, the assembler puts the union members
in the global symbol table with the value of their absolute offset from the top of the
union. In this case, each member must have a unique name.

« The expr is an optional expression indicating the beginning offset of the union.
Unions default to start at 0. This parameter can only be used with a top-level union. It
cannot be used when defining a nested union.

* The mem,, is an optional label for a member of the union. This label is absolute and
equates to the present offset from the beginning of the union. A label for a union
member cannot be declared global.

e The element is one of the following descriptors: .byte, .char, .int, .long, .word,
.double, .half, .short, .string, .float, and .field. An element can also be a complete
declaration of a nested structure or union, or a structure or union declared by its tag.
Following a .union directive, these directives describe the element's size. They do not
allocate memory.

» The expr,, is an optional expression for the number of elements described. This
value defaults to 1. A .string element is considered to be one byte in size, and a .field
element is one bit.

* The size is an optional label for the total size of the union.

SPRUHV6C-July 2014—-Revised July 2018 Assembler Directives 131
Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Directives Reference www.ti.com

Directives that Can Appear in a .union/.endunion Sequence

NOTE: The only directives that can appear in a .union/.endunion sequence are
element descriptors, structure and union tags, and conditional assembly
directives. Empty structures are illegal.

These examples show unions with and without tags.

Example 1 1 .global employid

2 xample -union ; utag

3 0000 1ival -word ; memberl = int

4 0000 fval -Ffloat ; member2 = float

5 0000 sval .string ; member3 = string

6 0002 real_len -endunion ; real_len = 2

7

8 000000 .bss employid, real_len ;allocate memory

9

10 employid .tag xample ; name an instance

11 000000 0000- ADD employid.fval, A ; access union element
Example 2 1

2 ; utag

3 0000 x -long ; memberl = long

4 0000 vy -Float ; member2 = float

5 0000 z -word ; member3 = word

6 0002 size_u -endunion ; real_len = 2

7
132 Assembler Directives SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com

Directives Reference

.usect

Syntax

Description

Example

Reserve Uninitialized Space

symbol .usect "section name", size in bytes|, alignment[, bank offset]]

The .usect directive reserves space for variables in an uninitialized, named section. This
directive is similar to the .bss directive; both simply reserve space for data and that
space has no contents. However, .usect defines additional sections that can be placed
anywhere in memory, independently of the .bss section.

» The symbol points to the first location reserved by this invocation of the .usect
directive. The symbol corresponds to the name of the variable for which you are
reserving space.

e The section name must be enclosed in double quotes. This parameter names the
uninitialized section. A section name can contain a subsection name in the form
section name : subsection name.

* The size in is an expression that defines the number of that are reserved in section
name.

e The alignment is an optional parameter that ensures that the space allocated to the
symbol occurs on the specified boundary. The boundary can be set to any power of
2.

» The bank offset is an optional parameter that ensures that the space allocated to the
symbol occurs on a specific memory bank boundary. The bank offset value measures
the number of bytes to offset from the alignment specified before assigning the
symbol to that location.

Initialized sections directives (.text, .data, and .sect) tell the assembler to pause
assembling into the current section and begin assembling into another section. A .usect
or .bss directive encountered in the current section is simply assembled, and assembly
continues in the current section.

Variables that can be located contiguously in memory can be defined in the same
specified section; to do so, repeat the .usect directive with the same section name and
the subsequent symbol (variable name).

For more information about sections, see Chapter 2.

This example uses the .usect directive to define two uninitialized, named sections, varl
and var2. The symbol ptr points to the first byte reserved in the varl section. The symbol
array points to the first byte in a block of 100 bytes reserved in varl, and dflag points to
the first byte in a block of 50 bytes in varl. The symbol vec points to the first byte
reserved in the var2 section.

SPRUHV6C-July 2014—-Revised July 2018 Assembler Directives 133
Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Directives Reference www.ti.com

Figure 5-8 shows how this example reserves space in two uninitialized sections, varl

and var2.
1
2 ** Assemble into the .text section. **
3
4 00000000 .text
5 00000000 E3A01003 LDI R1, 03h
6
7
8 *x Reserve 1 byte in the varl section. *x
9
10 00000000 ptr .usect "varl", 1
11
12
13 *x Reserve 100 bytes in the varl section. *x
14
15 00000001 array .usect “varl", 100
16
17 00000004 E281001F ADD RO, R1, 037 ; Still in _text
18
19
20 *x Reserve 50 bytes in the varl section. *x
21
22 00000065 dflag .usect "varl", 50
23
24 00000008 E2812064 ADD R2, R1, dflag - array ; Still in _text
25
26
27 ** Reserve 100 bytes in the var2 section. **
28
29 00000000 vec .usect ''var2", 100
30
31 0000000c E0824000 ADD R4, R2, RO ; Still in _text
32
33 ** Declare a .usect symbol to be external. **
34
35 -global array
Figure 5-8. The .usect Directive
Section var1 Section var2
Pr =" 2 pytes ptr —»
array —»
100 bytes
100 bytes
100 bytes reserved
in var2
dflag —»
50 bytes
152 bytes reserved
in var1
134 Assembler Directives SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Directives Reference

.unasg/.undefine Turn Off Substitution Symbol

Syntax .unasg symbol
.undefine symbol

Description The .unasg and .undefine directives remove the definition of a substitution symbol
created using .asg or .define. The named symbol will removed from the substitution
symbol table from the point of the .undefine or .unasg to the end of the assembly file.
See Section 4.7.8 for more information on substitution symbols.

These directives can be used to remove from the assembly environment any C/C++
macros that may cause a problem. See Chapter 13 for more information about using
C/C++ headers in assembly source.

.var Use Substitution Symbols as Local Variables
Syntax var sym, [, sym,, ..., sym,]
Description The .var directive allows you to use substitution symbols as local variables within a

macro. With this directive, you can define up to 32 local macro substitution symbols
(including parameters) per macro.

The .var directive creates temporary substitution symbols with the initial value of the null
string. These symbols are not passed in as parameters, and they are lost after
expansion.

See Section 4.7.8 for more information on substitution symbols .See Chapter 6 for
information on macros.

SPRUHV6C-July 2014—-Revised July 2018 Assembler Directives 135

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

I

TeEXAS
INSTRUMENTS

Chapter 6

SPRUHV6C-July 2014—Revised July 2018

Macro Language Description

The PRU assembler supports a macro language that enables you to create your own instructions. This is
especially useful when a program executes a particular task several times. The macro language lets you:

» Define your own macros and redefine existing macros

» Simplify long or complicated assembly code

* Access macro libraries created with the archiver

» Define conditional and repeatable blocks within a macro

* Manipulate strings within a macro

» Control expansion listing

Topic Page
S A U £ T o 1 =T 1 137
L2 T oY1 o /= T o 1P 137
6.3 Macro Parameters/Substitution SymbolSoeiiiiiiii s 139
LG |V =T 0T I 1 = = 145
6.5 Using Conditional ASSembly iN MaCIOS ...uiuiiieiiiiiiiii it e e naeaeeas 145
6.6 USING LADEIS IN MACIOS 1uuuiuiiitiiieiiieiet ettt e e s e e et e e e a s e e et e a e aaaa e e eaeenes 147
6.7 Producing MeSSages iN MaACIOS ... cuiueuiuieieieeeeuenaa e eeaeeaeneasa e e eenenra e e eenenenes 148
6.8 Using Directives to Format the Output LiSTiNG ...cceueuieieieiiiiieiiiiieeeeieeeeeeeeeaen 149
6.9 Using Recursive and NeSted MaCIOSucucuetieieiiiiet i ieeaeit e e aaaeaeaeaeaaanaeneaens 150
6.10 MaCro DIr€CtiVES SUMMAIY ...eueeiuiniuieeaeineaeeeaeaetaaaseeae e taaasaseaeeraanansaeeaeaeanns 151

136

Macro Language Description

SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

I

TEXAS

INSTRUMENTS

www.ti.com Using Macros

6.1

6.2

Using Macros

Programs often contain routines that are executed several times. Instead of repeating the source
statements for a routine, you can define the routine as a macro, then call the macro in the places where
you would normally repeat the routine. This simplifies and shortens your source program.

If you want to call a macro several times but with different data each time, you can assign parameters
within a macro. This enables you to pass different information to the macro each time you call it. The
macro language supports a special symbol called a substitution symbol, which is used for macro
parameters. See Section 6.3 for more information.

Using a macro is a 3-step process.

Step 1. Define the macro. You must define macros before you can use them in your program. There
are two methods for defining macros:

a. Macros can be defined at the beginning of a source file or in a copy/include file. See
Section 6.2, Defining Macros, for more information.

b. Macros can also be defined in a macro library. A macro library is a collection of files in
archive format created by the archiver. Each member of the archive file (macro library)
may contain one macro definition corresponding to the member name. You can access a
macro library by using the .mlib directive. For more information, see Section 6.4.

Step 2. Call the macro. After you have defined a macro, call it by using the macro name as a
mnemonic in the source program. This is referred to as a macro call.

Step 3. Expand the macro. The assembler expands your macros when the source program calls
them. During expansion, the assembler passes arguments by variable to the macro
parameters, replaces the macro call statement with the macro definition, then assembles the
source code. By default, the macro expansions are printed in the listing file. You can turn off
expansion listing by using the .mnolist directive. For more information, see Section 6.8.

When the assembler encounters a macro definition, it places the macro name in the opcode table. This
redefines any previously defined macro, library entry, directive, or instruction mnemonic that has the same
name as the macro. This allows you to expand the functions of directives and instructions, as well as to
add new instructions.

Defining Macros

You can define a macro anywhere in your program, but you must define the macro before you can use it.
Macros can be defined at the beginning of a source file or in a .copy/.include file (see Copy Source File);
they can also be defined in a macro library. For more information about macro libraries, see Section 6.4.

Macro definitions can be nested, and they can call other macros, but all elements of the macro must be
defined in the same file. Nested macros are discussed in Section 6.9.

A macro definition is a series of source statements in the following format:

macname .macro [parameter,][, ... , parameter,]
model statements or macro directives
[.mexit]
.endm

macname names the macro. You must place the name in the source statement's label field.
Only the first 128 characters of a macro name are significant. The assembler
places the macro name in the internal opcode table, replacing any instruction or
previous macro definition with the same name.

.macro is the directive that identifies the source statement as the first line of a macro
definition. You must place .macro in the opcode field.

parameter ,, are optional substitution symbols that appear as operands for the .macro directive.

parameter Parameters are discussed in Section 6.3.

SPRUHV6C-July 2014—-Revised July 2018 Macro Language Description 137
Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Defining Macros www.ti.com

model statements are instructions or assembler directives that are executed each time the macro is

called.
macro directives are used to control macro expansion.
.mexit is a directive that functions as a goto .endm. The .mexit directive is useful when

error testing confirms that macro expansion fails and completing the rest of the
macro is unnecessary.

.endm is the directive that terminates the macro definition.

If you want to include comments with your macro definition but do not want those comments to appear in
the macro expansion, use an exclamation point to precede your comments. If you do want your comments
to appear in the macro expansion, use an asterisk or semicolon. See Section 6.7 for more information
about macro comments.

Example 6-1 shows the definition, call, and expansion of a macro.
Example 6-1. Macro Definition, Call, and Expansion

Macro definition: The following code defines a macro, add3, with four parameters:

1 *

2

3 * add3

4 *

5 * ADDRP = P1 + P2 + P3

6

7 add3 .macro P1, P2, P3, ADDRP
8

9 ADD ADDRP, P1, P2

10 ADD ADDRP, ADDRP, P3
11 -endm

Macro call: The following code calls the add3 macro with four arguments:
12
13 00000000 add3 R1, R2, R3, RO

Macro expansion: The following code shows the substitution of the macro definition for the macro call. The
assembler substitutes R1, R2, R3, and RO for the P1, P2, P3, and ADDRP parameters of add3.

1
1 00000000 E0810002 ADD RO, R1, R2
1 00000004 E0800003 ADD RO, RO, R3
138 Macro Language Description SPRUHV6C—-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Macro Parameters/Substitution Symbols

6.3

Macro Parameters/Substitution Symbols

If you want to call a macro several times with different data each time, you can assign parameters within
the macro. The macro language supports a special symbol, called a substitution symbol, which is used for
macro parameters.

Macro parameters are substitution symbols that represent a character string. These symbols can also be
used outside of macros to equate a character string to a symbol name (see Section 4.7.8).

Valid substitution symbols can be up to 128 characters long and must begin with a letter. The remainder
of the symbol can be a combination of alphanumeric characters, underscores, and dollar signs.

Substitution symbols used as macro parameters are local to the macro they are defined in. You can define
up to 32 local substitution symbols (including substitution symbols defined with the .var directive) per
macro. For more information about the .var directive, see Section 6.3.6.

During macro expansion, the assembler passes arguments by variable to the macro parameters. The
character-string equivalent of each argument is assigned to the corresponding parameter. Parameters
without corresponding arguments are set to the null string. If the number of arguments exceeds the
number of parameters, the last parameter is assigned the character-string equivalent of all remaining
arguments.

If you pass a list of arguments to one parameter or if you pass a comma or semicolon to a parameter, you
must surround these terms with quotation marks.

At assembly time, the assembler replaces the macro parameter/substitution symbol with its corresponding
character string, then translates the source code into object code.

Example 6-2 shows the expansion of a macro with varying numbers of arguments.

Example 6-2. Calling a Macro With Varying Numbers of Arguments

Macro definition:

Parms

.macro a,b,c
a = :a:
b = :b:
c = :c:
.endm

Calling the macro:

Parms 100, label Parms 100, label,x,y
; a = 100 ; a = 100
; b = label ; b = label
; c="" ;0 Cc =Xy
Parms 100, , X Parms *"100,200,300",%x,y
; a = 100 ; a = 100,200,300
- b = - b = x
> Cc =X : c=y
Parms "Ustring’™™,x,y
; a = "string"
; b = x
; c=y
SPRUHV6C-July 2014—-Revised July 2018 Macro Language Description 139

Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Macro Parameters/Substitution Symbols www.ti.com

6.3.1 Directives That Define Substitution Symbols

You can manipulate substitution symbols with the .asg and .eval directives.
e The .asg directive assigns a character string to a substitution symbol.

For the .asg directive, the quotation marks are optional. If there are no quotation marks, the assembler
reads characters up to the first comma and removes leading and trailing blanks. In either case, a
character string is read and assigned to the substitution symbol. The syntax of the .asg directive is:

.asg["]character string["], substitution symbol

Example 6-3 shows character strings being assigned to substitution symbols.

Example 6-3. The .asg Directive

.asg R2, stack_ptr ; stack pointer

» The .eval directive performs arithmetic on numeric substitution symbols.

The .eval directive evaluates the expression and assigns the string value of the result to the
substitution symbol. If the expression is not well defined, the assembler generates an error and
assigns the null string to the symbol. The syntax of the .eval directive is:

.eval well-defined expression , substitution symbol

Example 6-4 shows arithmetic being performed on substitution symbols.

Example 6-4. The .eval Directive

.asg 1,counter

-loop 100

.word counter

.eval counter + 1,counter
-endloop

In Example 6-4, the .asg directive could be replaced with the .eval directive (.eval 1, counter) without
changing the output. In simple cases like this, you can use .eval and .asg interchangeably. However, you
must use .eval if you want to calculate a value from an expression. While .asg only assigns a character
string to a substitution symbol, .eval evaluates an expression and then assigns the character string
equivalent to a substitution symbol.

See Assign a Substitution Symbol for more information about the .asg and .eval assembler directives.

140

Macro Language Description SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

I

www.ti.com

TEXAS
INSTRUMENTS

Macro Parameters/Substitution Symbols

6.3.2 Built-In Substitution Symbol Functions

The following built-in substitution symbol functions enable you to make decisions on the basis of the string

value of substitution symbols. These functions always return a value, and they can be used in
expressions. Built-in substitution symbol functions are especially useful in conditional assembly
expressions. Parameters of these functions are substitution symbols or character-string constants.

In the function definitions shown in Table 6-1, a and b are parameters that represent substitution symbols

or character-string constants. The term string refers to the string value of the parameter. The symbol ch

represents a character constant.

Table 6-1. Substitution Symbol Functions and Return Values

Function Return Value

$symlen (a) Length of string a

$symemp (a,b) <0Oifa<b;0ifa=b;>0ifa>b

$firstch (a,ch) Index of the first occurrence of character constant ch in string a
$lastch (a,ch) Index of the last occurrence of character constant ch in string a
$isdefed (a) 1 if string a is defined in the symbol table

0 if string a is not defined in the symbol table

$ismember (a,b) Top member of list b is assigned to string a
0 if b is a null string

$iscons (a) 1 if string a is a binary constant
2 if string a is an octal constant
3 if string a is a hexadecimal constant
4 if string a is a character constant
5 if string a is a decimal constant

$isname (a) 1 if string a is a valid symbol name
0 if string a is not a valid symbol name

Sisreg (a) @ 1 if string a is a valid predefined register name
0 if string a is not a valid predefined register name

@ For more information about predefined register names, see Section 4.7.6.

Example 6-5 shows built-in substitution symbol functions.

Example 6-5. Using Built-In Substitution Symbol Functions

.asg label, ADDR ; ADDR = label

-if ($symcmp(ADDR, "label'™) = 0) ; evaluates to true
LDI R4, ADDR

.endif

.asg “X,y,z" , list ; list = x,y,z

.if ($ismember (ADDR, list)) ; ADDR = x, list = y,z
SUB R4, R4, 4 ; sub x

.endif

SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

Macro Language Description

141

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Macro Parameters/Substitution Symbols www.ti.com

6.3.3 Recursive Substitution Symbols

When the assembler encounters a substitution symbol, it attempts to substitute the corresponding
character string. If that string is also a substitution symbol, the assembler performs substitution again. The
assembler continues doing this until it encounters a token that is not a substitution symbol or until it
encounters a substitution symbol that it has already encountered during this evaluation.

In Example 6-6, the x is substituted for z; z is substituted for y; and y is substituted for x. The assembler
recognizes this as infinite recursion and ceases substitution.

Example 6-6. Recursive Substitution

.asg 'X",z ; declare z and assign z = "x"
.asg "'z",y ; declare y and assign y = "z"
.asg "y",x ; declare x and assign x = "y"
LDI RO, x

* LDI RO, x ; recursive expansion

6.3.4 Forced Substitution

In some cases, substitution symbols are not recognizable to the assembler. The forced substitution
operator, which is a set of colons surrounding the symbol, enables you to force the substitution of a
symbol's character string. Simply enclose a symbol with colons to force the substitution. Do not include
any spaces between the colons and the symbol. The syntax for the forced substitution operator is:

:symbol:

The assembler expands substitution symbols surrounded by colons before expanding other substitution
symbols.

You can use the forced substitution operator only inside macros, and you cannot nest a forced substitution
operator within another forced substitution operator.

142

Macro Language Description SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Macro Parameters/Substitution Symbols

Example 6-7 shows how the forced substitution operator is used.

Example 6-7. Using the Forced Substitution Operator

1 force .macro

2 .asg 0,x
3 .loop 8

4 AUX:x: _.set X

5 .eval x+1,x
6 -endloop

7 -endm

8
9

00000000 force
.asg 0,x
.loop 8
AUX:x: _.set X

.eval x+1,x

-endloop
00000000 AUXO .set O

.eval 0+1,x
00000001 AUX1 .set 1

.eval 1+1,x
00000002 AUX2 .set 2

.eval 2+1,x
00000003 AUX3 .set 3

.eval 3+1,x
00000004 AUX4 .set 4

.eval 4+1,x
00000005 AUX5 .set 5

.eval 5+1,x
00000006 AUX6 .set 6

.eval 6+1,x
00000007 AUX7 .set 7

.eval 7+1,x

NNNPNNNNNNNMNNNNMNNNNRPRRPRPR

6.3.5 Accessing Individual Characters of Subscripted Substitution Symbols

In a macro, you can access the individual characters (substrings) of a substitution symbol with subscripted
substitution symbols. You must use the forced substitution operator for clarity.

You can access substrings in two ways:
« :symbol (well-defined expression):

This method of subscripting evaluates to a character string with one character.
» :symbol (well-defined expression ,, well-defined expression ,):

In this method, expression, represents the substring's starting position, and expression, represents the
substring's length. You can specify exactly where to begin subscripting and the exact length of the
resulting character string. The index of substring characters begins with 1, not 0.

SPRUHV6C-July 2014—-Revised July 2018 Macro Language Description 143

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Macro Parameters/Substitution Symbols www.ti.com

Example 6-8 and Example 6-9 show built-in substitution symbol functions used with subscripted
substitution symbols. In Example 6-8, subscripted substitution symbols redefine the ADD instruction so
that it handles short immediate values. In Example 6-9, the subscripted substitution symbol is used to find
a substring strgl beginning at position start in the string strg2. The position of the substring strgl is
assigned to the substitution symbol pos.

Example 6-8. Using Subscripted Substitution Symbols to Redefine an Instruction

ADDX .macro dst, imm
.var TMP
.asg zimm(1):, TMP
-if $symemp(TMP,""#") = 0O
ADD dst, dst, imm
.else
.emsg ""Bad Macro Parameter"
.endif
.endm
ADDX R9, 100 ; macro call
ADDX R9, R8 ; macro call

Example 6-9. Using Subscripted Substitution Symbols to Find Substrings

substr .macro start,strgl,strg2,pos
.var LEN1,LEN2,1,TMP
.if $symlen(start) = 0
-eval 1,start
-endif
-eval 0,pos
.eval 1,i
.eval $symlen(strgl),LEN1
-eval $symlen(strg2),LEN2
-loop
-break I = (LEN2 - LEN1 + 1)
.asg "istrg2(l,LEN1) ", TMP
-eval i,pos
-break
.else
.eval 1+ 1,0
-endif
-endloop
-endm
.asg 0,pos
.asg arl ar2 ar3 ar4',regs
substr 1,"ar2",regs,pos
-word pos

6.3.6 Substitution Symbols as Local Variables in Macros

If you want to use substitution symbols as local variables within a macro, you can use the .var directive to
define up to 32 local macro substitution symbols (including parameters) per macro. The .var directive
creates temporary substitution symbols with the initial value of the null string. These symbols are not
passed in as parameters, and they are lost after expansion.

var sym, [,sym,, ...,sym,]

The .var directive is used in Example 6-8 and Example 6-9.

144 Macro Language Description SPRUHV6C—-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Macro Libraries

6.4 Macro Libraries

One way to define macros is by creating a macro library. A macro library is a collection of files that contain
macro definitions. You must use the archiver to collect these files, or members, into a single file (called an
archive). Each member of a macro library contains one macro definition. The files in a macro library must
be unassembled source files. The macro name and the member name must be the same, and the macro
filename's extension must be .asm. For example:

Macro Name Filename in Macro Library
simple simple.asm
add3 add3.asm

You can access the macro library by using the .mlib assembler directive (described in Define Macro
Library). The syntax is:

‘ .mlib filename

When the assembler encounters the .mlib directive, it opens the library named by filename and creates a
table of the library's contents. The assembler enters the names of the individual members within the library
into the opcode tables as library entries; this redefines any existing opcodes or macros that have the same
name. If one of these macros is called, the assembler extracts the entry from the library and loads it into
the macro table.

The assembler expands the library entry the same way it expands other macros. See Section 6.1 for how
the assembler expands macros. You can control the listing of library entry expansions with the .mlist
directive. For information about the .mlist directive, see Section 6.8 and Start/Stop Macro Expansion
Listing. Only macros that are actually called from the library are extracted, and they are extracted only
once.

You can use the archiver to create a macro library by including the desired files in an archive. A macro
library is no different from any other archive, except that the assembler expects the macro library to
contain macro definitions. The assembler expects only macro definitions in a macro library; putting object
code or miscellaneous source files into the library may produce undesirable results. For information about
creating a macro library archive, see Section 7.1.

6.5 Using Conditional Assembly in Macros

The conditional assembly directives are .if/.elseif/.else/.endif and .loop/ .break/.endloop. They can be
nested within each other up to 32 levels deep. The format of a conditional block is:

.if well-defined expression
[-.elseif well-defined expression]
[.else]

.endif

The .elseif and .else directives are optional in conditional assembly. The .elseif directive can be used
more than once within a conditional assembly code block. When .elseif and .else are omitted and when
the .if expression is false (0), the assembler continues to the code following the .endif directive. See
Assemble Conditional Blocks for more information on the .if/ .elseif/.else/.endif directives.

The .loop/.break/.endloop directives enable you to assemble a code block repeatedly. The format of a
repeatable block is:

Jloop [well-defined expression]
[.break [well-defined expression]]
.endloop

SPRUHV6C-July 2014—-Revised July 2018 Macro Language Description 145

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Using Conditional Assembly in Macros www.ti.com

The .loop directive's optional well-defined expression evaluates to the loop count (the number of loops to
be performed). If the expression is omitted, the loop count defaults to 1024 unless the assembler
encounters a .break directive with an expression that is true (nonzero). See Assemble Conditional Blocks
Repeatedly for more information on the .loop/.break/.endloop directives.

The .break directive and its expression are optional in repetitive assembly. If the expression evaluates to
false, the loop continues. The assembler breaks the loop when the .break expression evaluates to true or
when the .break expression is omitted. When the loop is broken, the assembler continues with the code
after the .endloop directive. For more information, see Section 5.7.

Example 6-10, Example 6-11, and Example 6-12 show the .loop/.break/ .endloop directives, properly
nested conditional assembly directives, and built-in substitution symbol functions used in a conditional
assembly code block.

Example 6-10. The .loop/.break/.endloop Directives

.asg 1,x
-loop

.break (x == 10) ; if x == 10, quit loop/break with expression

.eval X+1,X
-endloop

Example 6-11. Nested Conditional Assembly Directives

.asg 1,x

-loop

.if (x == 10) ; if x == 10, quit loop
.break (x == 10) ; force break

.endif

.eval X+1,X
-endloop

Example 6-12. Built-In Substitution Symbol Functions in a Conditional Assembly Code Block

*

-fcnolist

*Double Add or Subtract

*

DBL

.macro ABC, dsth, dstl, srch, srcl ; add or subtract double
.if $symemp (ABC, "'+

ADD dstl, dstl, srcl ; add double

ADC dsth, dsth, srch

.elseif $symcmp(ABC,"-"")
SuB dstl, dstl, srcl ; subtract double
SUBC dsth, dsth, srch

.else
.emsg "Incorrect Operator Parameter"

.endif

-endm

*Macro Call

DBL -, R4, R5, R6, R7

146

Macro Language Description SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

I

TEXAS
INSTRUMENTS

www.ti.com Using Labels in Macros

6.6

Using Labels in Macros

All labels in an assembly language program must be unique. This includes labels in macros. If a macro is
expanded more than once, its labels are defined more than once. Defining a label more than once is
illegal. The macro language provides a method of defining labels in macros so that the labels are unique.
Simply follow each label with a question mark, and the assembler replaces the question mark with a
period followed by a unique number. When the macro is expanded, you do not see the unique number in
the listing file. Your label appears with the question mark as it did in the macro definition. You cannot
declare this label as global. See Section 4.7.3 for more about labels.

The syntax for a unique label is:

label ?

unique label generation in a macro. The maximum label length is shortened to allow for the unique suffix.
For example, if the macro is expanded fewer than 10 times, the maximum label length is 126 characters. If
the macro is expanded from 10 to 99 times, the maximum label length is 125. The label with its unique
suffix is shown in the cross-listing file. To obtain a cross-listing file, invoke the assembler with the --
cross_reference option (see Section 4.3).

Example 6-13. Unique Labels in a Macro

WN P

4sign_extend_32_8 _macro dest, src
5 MOV dest, src

6 QBBC $1, dest, 7

7 FILL &dest.bl, 3

8end?:
9 -endm
10
11
12 .global sign_extend
13 00000000 sign_extend
14 00000000 sign_extend_32_8 R14, R14.b0
1 00000000 OOOO0O0100EQEEE MOV R14, R14.b0
1 00000004 000000C907EE02 QBBC $1, R14, 7
1 00000008 0000002EFFO12E FILL &R14.b1, 3
1 end?
15 0000000c 00000020C30000 JMP R3.w2
SPRUHV6C-July 2014—-Revised July 2018 Macro Language Description 147

Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

Producing Messages in Macros

13 TEXAS
INSTRUMENTS

www.ti.com

6.7

Producing Messages in Macros

The macro language supports three directives that enable you to define your own assembly-time error and
warning messages. These directives are especially useful when you want to create messages specific to
your needs. The last line of the listing file shows the error and warning counts. These counts alert you to
problems in your code and are especially useful during debugging.

.emsg

sends error messages to the listing file. The .emsg directive generates errors in the same

manner as the assembler, incrementing the error count and preventing the assembler from
producing an object file.

.mmsg

sends assembly-time messages to the listing file. The .mmsg directive functions in the same

manner as the .emsg directive but does not set the error count or prevent the creation of an

object file.
.wmsg

sends warning messages to the listing file. The .wmsg directive functions in the same

manner as the .emsg directive, but it increments the warning count and does not prevent the
generation of an object file.

Macro comments are comments that appear in the definition of the macro but do not show up in the
expansion of the macro. An exclamation point in column 1 identifies a macro comment. If you want your
comments to appear in the macro expansion, precede your comment with an asterisk or semicolon.

Example 6-14 shows user messages in macros and macro comments that do not appear in the macro

expansion.

For more information about the .emsg, .mmsg, and .wmsg assembler directives, see Define Messages.

Example 6-14. Producing Messages in a Macro

1
2
3
4
5
6
7
8
12
13
14
15 00000000
1
1
1
1
1
1
1
1
16
17 0000000c
1
1

1
1 Error, No Warnings

MUL_I -.macro X,y

-if ($symlen(x) ==0)
.emsg "ERROR --
-mexit

-elseif ($symlen(y)
.emsg "ERROR --
-mexit

.else

Missing Parameter™

== 0)
Missing Parameter"

.endif
-endm

MUL_I 50, 51

-if ($symlen(x) ==0)
.emsg "ERROR --
-mexit

.elseif ($symlen(y)
.emsg "ERROR --
-mexit

.else

Missing Parameter™

== O)
Missing Parameter™

.endif

MUL_I
-if ($symlen(x) ==0)
.emsg "ERROR -- Missing Parameter"

: ERROR -- Missing Parameter

.mexit

148 Macro Language Description

SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Using Directives to Format the Output Listing

6.8 Using Directives to Format the Output Listing

Macros, substitution symbols, and conditional assembly directives may hide information. You may need to
see this hidden information, so the macro language supports an expanded listing capability.

By default, the assembler shows macro expansions and false conditional blocks in the list output file. You
may want to turn this listing off or on within your listing file. Four sets of directives enable you to control
the listing of this information:

* Macro and loop expansion listing

.mlist expands macros and .loop/.endloop blocks. The .mlist directive prints all code
encountered in those blocks.
.mnolist suppresses the listing of macro expansions and .loop/ .endloop blocks.

For macro and loop expansion listing, .mlist is the default.

« False conditional block listing

fclist causes the assembler to include in the listing file all conditional blocks that do not
generate code (false conditional blocks). Conditional blocks appear in the listing
exactly as they appear in the source code.

fcnolist suppresses the listing of false conditional blocks. Only the code in conditional blocks
that actually assemble appears in the listing. The .if, .elseif, .else, and .endif directives
do not appear in the listing.

For false conditional block listing, .fclist is the default.

e Substitution symbol expansion listing

.sslist expands substitution symbols in the listing. This is useful for debugging the expansion
of substitution symbols. The expanded line appears below the actual source line.

.ssnolist turns off substitution symbol expansion in the listing.
For substitution symbol expansion listing, .ssnolist is the default.

» Directive listing
drlist causes the assembler to print to the listing file all directive lines.

.drnolist suppresses the printing of certain directives in the listing file. These directives are
.asg, .eval, .var, .sslist, .mlist, .fclist, .ssnolist, .mnolist, .fcnolist, .emsg, .wmsg,
.mmsg, .length, .width, and .break.

For directive listing, .drlist is the default.

SPRUHV6C-July 2014—-Revised July 2018 Macro Language Description 149

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Using Recursive and Nested Macros www.ti.com

6.9 Using Recursive and Nested Macros

The macro language supports recursive and nested macro calls. This means that you can call other
macros in a macro definition. You can nest macros up to 32 levels deep. When you use recursive macros,
you call a macro from its own definition (the macro calls itself).

When you create recursive or nested macros, you should pay close attention to the arguments that you
pass to macro parameters because the assembler uses dynamic scoping for parameters. This means that
the called macro uses the environment of the macro from which it was called.

Example 6-15 shows nested macros. The y in the in_block macro hides the y in the out_block macro. The
x and z from the out_block macro, however, are accessible to the in_block macro.

Example 6-15. Using Nested Macros

in_block _.macro y,a
- ; visible parameters are y,a and x,z from the calling macro
-endm

out_block .macro X,Y,Z
; visible parameters are X,y,z
in_block x,y ; macro call with x and y as arguments
-endm
out_block ; macro call

recursive and fact macros. The fact macro produces assembly code necessary to calculate the factorial of
n, where n is an immediate value. The result is placed in data memory address loc. The fact macro
accomplishes this by calling fact1, which calls itself recursively.

Example 6-16. Using Recursive Macros

fact -macro N, R26 ; N is an integer constant. Register R26 address = NI!
Jif N <2 ; 0 =11 =1
LDI R26, 1
.else
LDI R26, N ; N >= 2 so, store N in R26.
.eval -1, N ; Decrement N, and do the factorial of N - 1.
factl ; Call fact with current environment.
.endm
factl -macro
if N>1
LDI R28, N ; N> 1 so, store N in RO
MOV R29, R26 ; hardware multiplier result register is R26

XIN 0, &R26, 4
.eval N -1, N
factl

Decrement position.
Recursive call.

.endif

-endm

150 Macro Language Description SPRUHV6C—-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Macro Directives Summary

6.10 Macro Directives Summary

The directives listed in Table 6-2 through Table 6-6 can be used with macros. The .macro, .mexit, .endm
and .var directives are valid only with macros; the remaining directives are general assembly language
directives.

Table 6-2. Creating Macros

See
Mnemonic and Syntax Description Macro Use Directive
.endm End macro definition Section 6.2 .endm
macname .macro [parameter,][,... , parameter,] Define macro by macname Section 6.2 .macro
.mexit Go to .endm Section 6.2 Section 6.2
.mlib filename Identify library containing macro definitions Section 6.4 .mlib

Table 6-3. Manipulating Substitution Symbols
See

Mnemonic and Syntax Description Macro Use Directive

.asg ["]character string["], substitution symbol Assign character string to substitution symbol Section 6.3.1 .asg

.eval well-defined expression, substitution symbol Perform arithmetic on numeric substitution symbols Section 6.3.1 .eval

var sym, [, sym,, ..., sym,] Define local macro symbols Section 6.3.6 .var

Table 6-4. Conditional Assembly

See
Mnemonic and Syntax Description Macro Use Directive
.break [well-defined expression] Optional repeatable block assembly Section 6.5 .break
.endif End conditional assembly Section 6.5 .endif
.endloop End repeatable block assembly Section 6.5 .endloop
.else Optional conditional assembly block Section 6.5 .else
.elseif well-defined expression Optional conditional assembly block Section 6.5 .elseif
.if well-defined expression Begin conditional assembly Section 6.5 Jif
.loop [well-defined expression] Begin repeatable block assembly Section 6.5 loop
Table 6-5. Producing Assembly-Time Messages
See
Mnemonic and Syntax Description Macro Use Directive
.emsg Send error message to standard output Section 6.7 .emsg
.mmsg Send assembly-time message to standard output Section 6.7 .mmsg
.wmsg Send warning message to standard output Section 6.7 .wmsg
Table 6-6. Formatting the Listing
See
Mnemonic and Syntax Description Macro Use Directive
fclist Allow false conditional code block listing (default) Section 6.8 fclist
fcnolist Suppress false conditional code block listing Section 6.8 fenolist
.mlist Allow macro listings (default) Section 6.8 .mlist
.mnolist Suppress macro listings Section 6.8 .mnolist
.sslist Allow expanded substitution symbol listing Section 6.8 .sslist
.ssnolist Suppress expanded substitution symbol listing (default) Section 6.8 .ssnolist

SPRUHV6C-July 2014—-Revised July 2018
Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

Macro Language Description 151

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

1 Chapter 7
I TEXAS SPRUHV6C-July 2014—Revised July 2018

INSTRUMENTS
Archiver Description

The PRU archiver lets you combine several individual files into a single archive file. For example, you can
collect several macros into a macro library. The assembler searches the library and uses the members
that are called as macros by the source file. You can also use the archiver to collect a group of object files
into an object library. The linker includes in the library the members that resolve external references during
the link. The archiver allows you to modify a library by deleting, replacing, extracting, or adding members.

Topic Page
A% R N (o] gAY =T GO AT T 153
7.2 The Archiver's Role in the Software Development FIOWc.covviiiiiiiiiiiiiiiiiniininnnns 154
7.3 INVOKING the ArCHIVEr . e e e et e a e e eees 155
A N o] LAY Gl G- 11 0] [P 156
7.5 Library Information Archiver DeSCIPLIONuee et eeaes 157
152 Archiver Description SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Archiver Overview

7.1 Archiver Overview

You can build libraries from any type of files. Both the assembler and the linker accept archive libraries as
input; the assembler can use libraries that contain individual source files, and the linker can use libraries
that contain individual object files.

One of the most useful applications of the archiver is building libraries of object modules. For example,
you can write several arithmetic routines, assemble them, and use the archiver to collect the object files
into a single, logical group. You can then specify the object library as linker input. The linker searches the
library and includes members that resolve external references.

You can also use the archiver to build macro libraries. You can create several source files, each of which
contains a single macro, and use the archiver to collect these macros into a single, functional group. You
can use the .mlib directive during assembly to specify that macro library to be searched for the macros
that you call. Chapter 6 discusses macros and macro libraries in detail, while this chapter explains how to
use the archiver to build libraries.

SPRUHV6C-July 2014—-Revised July 2018 Archiver Description 153
Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

The Archiver's Role in the Software Development Flow www.ti.com

7.2 The Archiver's Role in the Software Development Flow

Figure 7-1 shows the archiver's role in the software development process. The shaded portion highlights
the most common archiver development path. Both the assembler and the linker accept libraries as input.

Figure 7-1. The Archiver in the PRU Software Development Flow

C/C++
source
files
L L
Macro
source CGEs
files compller
C/C++ name
: Assembler demangling
source utility
:‘r'lbé:g_? Assembler

Object Library-build Debugging

files utility

-
ol Run-time-
Library of support
object library
files

Executable
object file

Hex-conversion

utility

EPROM

Cross-reference Object file
programmer lister utilities

Absolute lister

154 Archiver Description SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

I

TEXAS
INSTRUMENTS

www.ti.com

Invoking the Archiver

7.3

Invoking the Archiver

To invoke the archiver, enter:

‘arpru[—]command [options] libname [filename, ... filename,]

arpru
[FJcommand

options

libname

filenames

is the command that invokes the archiver.

tells the archiver how to manipulate the existing library members and any specified. A
command can be preceded by an optional hyphen. You must use one of the following
commands when you invoke the archiver, but you can use only one command per
invocation. The archiver commands are as follows:

@ uses the contents of the specified file instead of command line entries. You can
use this command to avoid limitations on command line length imposed by the
host operating system. Use a ; at the beginning of a line in the command file to
include comments. (See Example 7-1 for an example using an archiver command
file.)

a adds the specified files to the library. This command does not replace an existing
member that has the same name as an added file; it simply appends new
members to the end of the archive.

d deletes the specified members from the library.

replaces the specified members in the library. If you do not specify filenames, the
archiver replaces the library members with files of the same name in the current
directory. If the specified file is not found in the library, the archiver adds it instead
of replacing it.

t prints a table of contents of the library. If you specify filenames, only those files
are listed. If you do not specify any filenames, the archiver lists all the members in
the specified library.

X extracts the specified files. If you do not specify member names, the archiver
extracts all library members. When the archiver extracts a member, it simply
copies the member into the current directory; it does not remove it from the library.

In addition to one of the commands, you can specify options. To use options, combine
them with a command; for example, to use the a command and the s option, enter -as
or as. The hyphen is optional for archiver options only. These are the archiver options:

-g (quiet) suppresses the banner and status messages.

-s prints a list of the global symbols that are defined in the library. (This option is
valid only with the a, r, and d commands.)

-u replaces library members only if the replacement has a more recent modification
date. You must use the r command with the -u option to specify which members to
replace.

-v (verbose) provides a file-by-file description of the creation of a new library from an
old library and its members.

names the archive library to be built or modified. If you do not specify an extension for

libname, the archiver uses the default extension .lib.

names individual files to be manipulated. These files can be existing library members or

new files to be added to the library. When you enter a filename, you must enter a

complete filename including extension, if applicable.

Naming Library Members

NOTE: Itis possible (but not desirable) for a library to contain several members with the same
name. If you attempt to delete, replace, or extract a member whose name is the same as
another library member, the archiver deletes, replaces, or extracts the first library member
with that name.

SPRUHV6C-July 2014—-Revised July 2018 Archiver Description 155
Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Archiver Examples www.ti.com

7.4 Archiver Examples

The following are examples of typical archiver operations:

If you want to create a library called function.lib that contains the files sine.obj, cos.obj, and flt.obj,
enter:

arpru -a function sine.obj cos.obj flt.obj
The archiver responds as follows:
==> new archive "function.lib® ==> building new archive "function.lib”
You can print a table of contents of function.lib with the -t command, enter:
arpru -t function
The archiver responds as follows:

FILE NAME SIZE DATE

sine.obj 300 Wed Jun 15 10:00:24 2011
cos.obj 300 Wed Jun 15 10:00:30 2011
flt.obj 300 Wed Jun 15 09:59:56 2011

If you want to add new members to the library, enter:
arpru -as function atan.obj

The archiver responds as follows:

==> gsymbol defined: "_sin"
==> symbol defined: "$sin”
==> symbol defined: "_cos"
==> symbol defined: "$cos”
==> symbol defined: "_tan*
==> symbol defined: "$tan”
==> gsymbol defined: "_atan
==> symbol defined: "$atan”
==> building archive "function.lib"

Because this example does not specify an extension for the libname, the archiver adds the files to the
library called function.lib. If function.lib does not exist, the archiver creates it. (The -s option tells the
archiver to list the global symbols that are defined in the library.)

If you want to modify a library member, you can extract it, edit it, and replace it. In this example,
assume there is a library named macros.lib that contains the members push.asm, pop.asm, and
swap.asm.

arpru -x macros push.asm

The archiver makes a copy of push.asm and places it in the current directory; it does not remove
push.asm from the library. Now you can edit the extracted file. To replace the copy of push.asm in the
library with the edited copy, enter:

arpru -r macros push.asm

If you want to use a command file, specify the command filename after the -@ command. For
example:

arpru -@modules.cmd
The archiver responds as follows:
==> building archive "modules.lib*

156 Archiver Description SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS

INSTRUMENTS

www.ti.com Archiver Examples

Example 7-1 is the modules.cmd command file. The r command specifies that the filenames given in
the command file replace files of the same name in the modules.lib library. The -u option specifies that
these files are replaced only when the current file has a more recent revision date than the file that is
in the library.

Example 7-1. Archiver Command File

; Command file to replace members of the

modules library with updated files

; Use r command and u option:

ru

; Specify library name:
modulles.lib

; List filenames to be replaced if updated:
align.asm

bss.asm

data.asm

text.asm

sect.asm

copy.asm

double.asm
drnolist.asm

emsg.

asm

end.asm

7.5

Library Information Archiver Description

Section 7.1 explains how to use the archiver to create libraries of object files for use in the linker of one or
more applications. You can have multiple versions of the same object file libraries, each built with different
sets of build options. For example, you might have different versions of your object file library for big and
little endian, for different architecture revisions, or for different ABlIs depending on the typical build
environments of client applications. However, if you have several versions of a library, it can be
cumbersome to keep track of which version of the library needs to be linked in for a particular application.

When several versions of a single library are available, the library information archiver can be used to
create an index library of all of the object file library versions. This index library is used in the linker in
place of a particular version of your object file library. The linker looks at the build options of the
application being linked, and uses the specified index library to determine which version of your object file
library to include in the linker. If one or more compatible libraries were found in the index library, the most
suitable compatible library is linked in for your application.

7.5.1 Invoking the Library Information Archiver
To invoke the library information archiver, enter:
libinfopru [options] -o=libname libname, [libname, ... libname,]
libinfopru is the command that invokes the library information archiver.
options changes the default behavior of the library information archiver. These options are:
-0 libname specifies the name of the index library to create or update. This option is
required.
-u updates any existing information in the index library specified with the -o
option instead of creating a new index.
libnames names individual object file libraries to be manipulated. When you enter a libname, you
must enter a complete filename including extension, if applicable.
SPRUHV6C-July 2014—-Revised July 2018 Archiver Description 157

Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Library Information Archiver Description www.ti.com

7.5.2

7.5.3

754

Library Information Archiver Example

Consider these object file libraries that all have the same members, but are built with different build
options:

Object File Library Name Build Options
mylib_pruvl_le.lib --silicon_version=1 --endian=little
mylib_pruvl_be.lib --silicon_version=1 --endian=big
mylib_pruv2_le.lib --silicon_version=2 --endian=little
mylib_pruv2_be.lib --silicon_version=2 --endian=big
mylib_pruv3_le.lib --silicon_version=3 --endian=little
mylib_pruv3_be.lib --silicon_version=3 --endian=big
mylib_pruv4_le.lib --silicon_version=4 --endian=little
mylib_pruv4_be.lib --silicon_version=4 --endian=big

Using the library information archiver, you can create an index library called mylib.lib from the above
libraries:
libinfopru -o mylib_.lib mylib_pruv3 be._lib mylib_pruv2_be.lib

mylib__pruvl_be.lib

You can now specify mylib.lib as a library for the linker of an application. The linker uses the index library
to choose the appropriate version of the library to use. If the --issue_remarks option is specified before the
--run_linker option, the linker reports which library was chosen.

» Example 1 (little endian):

Listing the Contents of an Index Library

The archiver's -t option can be used on an index library to list the archives indexed by an index library:
arpru t mylib._lib

SIZE DATE FILE NAME

119 Mon Apr 23 12:45:22 2007 mylib_pruv3_le_lib.libinfo

119 Mon Apr 23 12:45:22 2007 mylib_pruv3_be.lib.libinfo

119 Mon Apr 23 12:45:22 2007 mylib_pruv2_le.lib.libinfo

119 Mon Apr 23 12:45:22 2007 mylib_pruv2_be.lib.libinfo

119 Mon Apr 23 12:45:22 2007 mylib_pruvl_le.lib.libinfo

119 Mon Apr 23 12:45:22 2007 mylib_pruvl_be.lib.libinfo
0 Mon Apr 23 12:45:22 2007 __ TI1_$$LIBINFO

The indexed object file libraries have an additional .libinfo extension in the archiver listing. The
__TI_$$LIBINFO member is a special member that designates mylib.lib as an index library, rather than a
regular library.

If the archiver’'s -d command is used on an index library to delete a .libinfo member, the linker will no
longer choose the corresponding library when the index library is specified.

Using any other archiver option with an index library, or using -d to remove the __ Tl _$$LIBINFO member,
results in undefined behavior, and is not supported.

Requirements

You must follow these requirements to use library index files:
» At least one application object file must appear on the linker command line before the index library.

» Each object file library specified as input to the library information archiver must only contain object file
members that are built with the same build options.

» The linker expects the index library and all of the libraries it indexes to be in a single directory.

158

Archiver Description SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

1 Chapter 8
I TEXAS SPRUHV6C-July 2014—Revised July 2018

INSTRUMENTS

Linker Description

The PRU linker creates executable modules by combining object modules. This chapter describes the
linker options, directives, and statements used to create executable modules. Object libraries, command
files, and other key concepts are discussed as well.

The concept of sections is basic to linker operation; Chapter 2 includes a detailed discussion of sections.

Topic Page
8.1 LINKEI OVEIVIEBW ..viiuiuiiuieiniiiaieitiees st et ea s e e s e ea s e e s e e e s e s et s e enreen s e en e anren 160
8.2 The Linker's Role in the Software Development FIOW..........ocveieiiiiiiiiiiieieiieieenen. 161
8.3 INVOKING the LINKEI ..cuiiieieieie et ettt e e e a e e e e e e e nen e nn e e 162
S I T | Q=T G @ o o P 163
8.5 Linker Command FileScuiuieiiiiiii i 182
8.6 LiNKEr SYMbOIS .ouuiiiiiiiiii e e e 216
8.7 Default Placement AlgOorithm ... e 219
8.8 Linker-Generated Copy Tables e 220
8.9 Partial (Incremental) LiNKiNgcocuiiuieieiiiecieeeie et e e se e e e eneaeeeaes 231
S O T Q] o O L@ O o o =P 232
8.11 LinKer EXAMPIE ...ttt et e e e e e a e 234

SPRUHV6C-July 2014—-Revised July 2018 Linker Description 159

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS

INSTRUMENTS

Linker Overview www.ti.com
8.1 Linker Overview

The PRU linker allows you to allocate output sections efficiently in the memory map. As the linker

combines object files, it performs the following tasks:

» Allocates sections into the target system's configured memory

» Relocates symbols and sections to assign them to final addresses

» Resolves undefined external references between input files

The linker command language controls memory configuration, output section definition, and address

binding. The language supports expression assignment and evaluation. You configure system memory by

defining and creating a memory model that you design. Two powerful directives, MEMORY and

SECTIONS, allow you to:

» Allocate sections into specific areas of memory

» Combine object file sections

» Define or redefine global symbols at link time
160 Linker Description SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com The Linker's Role in the Software Development Flow
8.2 The Linker's Role in the Software Development Flow

Figure 8-1 illustrates the linker's role in the software development process. The linker accepts several
types of files as input, including object files, command files, libraries, and partially linked files. The linker
creates an executable object module that can be downloaded to one of several development tools or
executed by a PRU device.

Figure 8-1. The Linker in the PRU Software Development Flow

C/C++
source
files
L L
Macro
source CiC++
files compiler

C/C++ name

Assembler

demanglin
source giing

utility

Macro

library Assembler

Object Libratr:'_lir.:‘build Debugging

files Uity

I_[
. Run-time-
Library of support
object library
files
L L

Executable
object file

Hex-conversion
utility

EPROM

Cross-reference Object file
programmer lister utilities

Absolute lister

SPRUHV6C-July 2014—-Revised July 2018

Linker Description 161
Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Invoking the Linker www.ti.com

8.3

Invoking the Linker

The general syntax for invoking the linker is:

clpru --run_linker [options] filename, filename,

clpru --run_linker is the command that invokes the linker. The --run_linker option's short form is

-Z.

options can appear anywhere on the command line or in a linker command file.

(Options are discussed in Section 8.4.)

filename 4, filename can be object files, linker command files, or archive libraries. The default

extension for all input files is .obj; any other extension must be explicitly
specified. The linker can determine whether the input file is an object or ASCII
file that contains linker commands. The default output filename is a.out, unless
you use the --output_file option to name the output file.

There are two methods for invoking the linker:

Specify options and filenames on the command line. This example links two files, filel.obj and file2.obj,
and creates an output module named link.out.

clpru --run_linker filel.obj file2.obj --output_file=link.out

Put filenames and options in a linker command file. Filenames that are specified inside a linker
command file must begin with a letter. For example, assume the file linker.cmd contains the following
lines:

--output_File=link.out filel.obj file2.obj
Now you can invoke the linker from the command line; specify the command filename as an input file:
clpru --run_linker linker.cmd

When you use a command file, you can also specify other options and files on the command line. For
example, you could enter:

clpru --run_linker --map_Ffile=link.map linker.cmd file3.obj

The linker reads and processes a command file as soon as it encounters the filename on the

command line, so it links the files in this order: filel.obj, file2.obj, and file3.0bj. This example creates an
output file called link.out and a map file called link.map.

For information on invoking the linker for C/C++ files, see Section 8.10.

162

Linker Description SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com

Linker Options

8.4 Linker Options

Linker options control linking operations. They can be placed on the command line or in a command file.
Linker options must be preceded by a hyphen (-). Options can be separated from arguments (if they have
them) by an optional space.

Table 8-1. Basic Options Summary

Option Alias Description Section
--run_linker -z Enables linking Section 8.3
--output_file -0 Names the executable output module. The default filename is a.out. Section 8.4.23
--map_file -m Produces a map or listing of the input and output sections, including holes, and Section 8.4.18
places the listing in filename
--stack_size -stack Sets C system stack size to size and defines a global symbol that specifies the Section 8.4.29
stack size. Default = 256 bytes
--heap_size -heap Sets heap size (for the dynamic memory allocation in C) to size and defines a Section 8.4.14
global symbol that specifies the heap size. Default = 256 bytes
Table 8-2. File Search Path Options Summary
Option Alias Description Section
--library -l Names an archive library or link command filename as linker input Section 8.4.16
--search_path -i Alters library-search algorithms to look in a directory named with pathname Section 8.4.16.1
before looking in the default location. This option must appear before the --
library option.
--priority -priority Satisfies unresolved references by the first library that contains a definition for ~ Section 8.4.16.3
that symbol
--reread_libs -X Forces rereading of libraries, which resolves back references Section 8.4.16.3

--disable_auto_rts Disables the automatic selection of a run-time-support library Section 8.4.8
Table 8-3. Command File Preprocessing Options Summary
Option Alias Description Section
--define Predefines name as a preprocessor macro. Section 8.4.10
--undefine Removes the preprocessor macro name. Section 8.4.10
--disable_pp Disables preprocessing for command files Section 8.4.10
Table 8-4. Diagnostic Options Summary
Option Alias Description Section
--diag_error Categorizes the diagnostic identified by num as an error Section 8.4.7
--diag_remark Categorizes the diagnostic identified by nhum as a remark Section 8.4.7
--diag_suppress Suppresses the diagnostic identified by num Section 8.4.7
--diag_warning Categorizes the diagnostic identified by nhum as a warning Section 8.4.7
--display_error_number Displays a diagnostic's identifiers along with its text Section 8.4.7
--emit_warnings_as_errors -pdew Treats warnings as errors Section 8.4.7
--issue_remarks Issues remarks (nonserious warnings) Section 8.4.7
--no_demangle Disables demangling of symbol names in diagnostics Section 8.4.20
--no_warnings Suppresses warning diagnostics (errors are still issued) Section 8.4.7
--set_error_limit Sets the error limit to num. The linker abandons linking after this number of Section 8.4.7
errors. (The default is 100.)
--verbose_diagnostics Provides verbose diagnostics that display the original source with line-wrap Section 8.4.7

SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

Linker Description

163

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

Linker Options

I

TEXAS
INSTRUMENTS

www.ti.com

Table 8-5. Linker Output Options Summary

Option Alias Description Section
--absolute_exe -a Produces an absolute, executable module. This is the default; if neither -- Section 8.4.3.1
absolute_exe nor --relocatable is specified, the linker acts as if --absolute_exe
were specified.
--ecc={ on | off } Enable linker-generated Error Correcting Codes (ECC). The default is off. Section 8.4.11
Section 8.5.9
--ecc:data_error Inject the specified errors into the output file for testing Section 8.4.11
Section 8.5.9
--ecc:ecc_error Inject the specified errors into the Error Correcting Code (ECC) for testing Section 8.4.11
Section 8.5.9
--mapfile_contents Controls the information that appears in the map file. Section 8.4.19
--relocatable -r Produces a nonexecutable, relocatable output module Section 8.4.3.2
--rom -r Create a ROM object
--run_abs -abs Produces an absolute listing file Section 8.4.27
--xml_link_info Generates a well-formed XML file containing detailed information about the Section 8.4.34
result of a link
Table 8-6. Symbol Management Options Summary
Option Alias Description Section
--entry_point -e Defines a global symbol that specifies the primary entry point for the output Section 8.4.12
module
--globalize Changes the symbol linkage to global for symbols that match pattern Section 8.4.17
--hide Hides global symbols that match pattern Section 8.4.15
--localize Changes the symbol linkage to local for symbols that match pattern Section 8.4.17
--make_global -g Makes symbol global (overrides -h) Section 8.4.17.1
--make_static -h Makes all global symbols static Section 8.4.17.1
--no_symtable -S Strips symbol table information and line number entries from the output Section 8.4.22
module
--retain Retains a list of sections that otherwise would be discarded Section 8.4.26
--scan_libraries -scanlibs Scans all libraries for duplicate symbol definitions Section 8.4.28
--symbol_map Maps symbol references to a symbol definition of a different name Section 8.4.31
--undef_sym -u Places an unresolved external symbol into the output module's symbol table Section 8.4.32
--unhide Reveals (un-hides) global symbols that match pattern Section 8.4.15
Table 8-7. Run-Time Environment Options Summary
Option Alias Description Section
--arg_size --args Allocates memory to be used by the loader to pass arguments Section 8.4.4
-fill_value -f Sets default fill values for holes within output sections; fill_value is a 32-bit Section 8.4.13
constant
--ram_model -cr Initializes variables at load time Section 8.4.25
--rom_model -C Autoinitializes variables at run time Section 8.4.25
Table 8-8. Link-Time Optimization Options Summary
Option Alias Description Section
--cinit_compression Specifies the type of compression to apply to the C auto initialization data. The Section 8.4.5
[=compression_kind] default if this option is used with no kind specified is Izss for Lempel-Ziv-
Storer-Szymanski compression. Alternately, specify --cinit_compression=rle to
use Run Length Encoded compression, which generally provides less efficient
compression.
--compress_dwarf Aggressively reduces the size of DWARF information from input object files Section 8.4.6

164 Linker Description

SPRUHV6C-July 2014—-Revised July 2018
Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Linker Options

Table 8-8. Link-Time Optimization Options Summary (continued)

Option Alias Description Section

--COpy_compression Compresses data copied by linker copy tables Section 8.4.5

[=compression_kind]

--unused_section_elimination Eliminates sections that are not needed in the executable module; on by Section 8.4.9
default

Table 8-9. Miscellaneous Options Summary

Option Alias Description Section

--linker_help -help Displays information about syntax and available options -

--preferred_order Prioritizes placement of functions Section 8.4.24

--strict_compatibility Performs more conservative and rigorous compatibility checking of input object Section 8.4.30
files

--zero_init Controls preinitialization of uninitialized variables. Default is on. Section 8.4.35

8.4.1 Wildcards in File, Section, and Symbol Patterns

The linker allows file, section, and symbol names to be specified using the asterisk (*) and question mark
(?) wildcards. Using * matches any number of characters and using ? matches a single character. Using
wildcards can make it easier to handle related objects, provided they follow a suitable naming convention.

For example:

mp3*.obj /* matches anything .obj that begins with mp3 */
task?.o0* /* matches taskl.obj, task2.obj, taskX.o55, etc. */

SECTIONS

{
.fast_code: { *.obj(*fast*) } > FAST_MEM
.str_code : { rts*_lib<str*.obj>(.text) } > S1ROM

}

8.4.2 Specifying C/C++ Symbols with Linker Options

The link-time symbol is the same as the C/C++ identifier name. The compiler does not prepend an
underscore to the beginning of C/C++ identifiers.

See Section 8.6.1 for information about referring to linker symbols in C/C++ code.

8.4.3 Relocation Capabilities (--absolute_exe and --relocatable Options)

The linker performs relocation, which is the process of adjusting all references to a symbol when the
symbol's address changes (Section 2.7).

The linker supports two options (--absolute_exe and --relocatable) that allow you to produce an absolute
or a relocatable output module. The linker also supports a third option (-ar) that allows you to produce an
executable, relocatable output module.

When the linker encounters a file that contains no relocation or symbol table information, it issues a
warning message (but continues executing). Relinking an absolute file can be successful only if each input
file contains no information that needs to be relocated (that is, each file has no unresolved references and
is bound to the same virtual address that it was bound to when the linker created it).

8.4.3.1 Producing an Absolute Output Module (--absolute_exe option)

When you use the --absolute_exe option without the --relocatable option, the linker produces an absolute,
executable output module. Absolute files contain no relocation information. Executable files contain the
following:

» Special symbols defined by the linker (see Section 8.5.10.4)

SPRUHV6C-July 2014—-Revised July 2018 Linker Description 165

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Linker Options www.ti.com

» An header that describes information such as the program entry point
* No unresolved references

The following example links filel.obj and file2.0bj and creates an absolute output module called a.out:
clpru --run_linker --absolute_exe filel.obj file2.0bj

The --absolute_exe and --relocatable Options

NOTE: If you do not use the --absolute_exe or the --relocatable option, the linker acts as if you
specified --absolute_exe.

8.4.3.2 Producing a Relocatable Output Module (--relocatable option)

When you use the --relocatable option, the linker retains relocation entries in the output module. If the
output module is relocated (at load time) or relinked (by another linker execution), use --relocatable to
retain the relocation entries.

The linker produces a file that is not executable when you use the --relocatable option without the --
absolute_exe option. A file that is not executable does not contain special linker symbols or an optional
header. The file can contain unresolved references, but these references do not prevent creation of an
output module.

This example links filel.obj and file2.obj and creates a relocatable output module called a.out:
clpru --run_linker --relocatable filel.obj file2.obj

The output file a.out can be relinked with other object files or relocated at load time. (Linking a file that will
be relinked with other files is called partial linking. For more information, see Section 8.9.)

8.4.3.3 Producing an Executable, Relocatable Output Module (-ar Option)

8.4.4

8.4.5

If you invoke the linker with both the --absolute_exe and --relocatable options, the linker produces an
executable, relocatable object module. The output file contains the special linker symbols, an optional
header, and all resolved symbol references; however, the relocation information is retained.

This example links filel.obj and file2.obj to create an executable, relocatable output module called xr.out:
clpru --run_linker -ar filel.obj file2.obj --output_file=xr.out

Allocate Memory for Use by the Loader to Pass Arguments (--arg_size Option)

The --arg_size option instructs the linker to allocate memory to be used by the loader to pass arguments
from the command line of the loader to the program. The syntax of the --arg_size option is:

--arg_size= size
The size is the number of bytes to be allocated in target memory for command-line arguments.

By default, the linker creates the ¢ _args__ symbol and sets it to -1. When you specify --arg_size=size,
the following occur:

» The linker creates an uninitialized section named .args of size bytes.
* The __c_args__ symbol contains the address of the .args section.

The loader and the target boot code use the .args section and the __c¢_args___ symbol to determine
whether and how to pass arguments from the host to the target program. See the PRU Optimizing C/C++
Compiler User's Guide for information about the loader.

Compression (--cinit_compression and --copy_compression Option)
By default, the linker does not compress data. These two options specify compression through the linker.

The --cinit_compression option specifies the compression type the linker applies to the C autoinitialization
data. The default is Izss.

166

Linker Description SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

I

TEXAS
INSTRUMENTS

www.ti.com Linker Options

8.4.6

8.4.7

Overlays can be managed by using linker-generated copy tables. To save ROM space the linker can
compress the data copied by the copy tables. The compressed data is decompressed during copy. The --
copy_compression option controls the compression of the copy data tables.

The syntax for the options are:
--cinit_compression[=compression_kind]
--copy_compression[=compression_kind]

The compression_kind can be one of the following types:
« off. Don't compress the data.
» rle. Compress data using Run Length Encoding.

» lzss. Compress data using Lempel-Ziv Storer and Symanski compression (the default if
nocompression_kind is specified).

See Section 8.8.5 for more information about compression.

Compress DWARF Information (--compress_dwarf Option)

The --compress_dwarf option aggressively reduces the size of DWARF information by eliminating
duplicate information from input object files. The --compress_dwarf option eliminates duplicate information
that could not be removed through the use of ELF COMDAT groups. (See the ELF specification for
information on COMDAT groups.)

Control Linker Diaghostics

The linker uses certain C/C++ compiler options to control linker-generated diagnostics. The diagnostic
options must be specified before the --run_linker option.

--diag_error=num Categorize the diagnostic identified by num as an error. To find the numeric
identifier of a diagnostic message, use the --display_error_number option first
in a separate link. Then use --diag_error=num to recategorize the diagnostic
as an error. You can only alter the severity of discretionary diagnostics.

--diag_remark=num Categorize the diagnostic identified by num as a remark. To find the numeric
identifier of a diagnostic message, use the --display_error_number option first
in a separate link. Then use --diag_remark=num to recategorize the
diagnostic as a remark. You can only alter the severity of discretionary
diagnostics.

--diag_suppress=num Suppress the diagnostic identified by num. To find the numeric identifier of a
diagnostic message, use the --display_error_number option first in a
separate link. Then use --diag_suppress=num to suppress the diagnostic.
You can only suppress discretionary diagnostics.

--diag_warning=num Categorize the diagnostic identified by num as a warning. To find the numeric
identifier of a diagnostic message, use the --display_error_number option first
in a separate link. Then use --diag_warning=num to recategorize the
diagnostic as a warning. You can only alter the severity of discretionary
diagnostics.

--display_error_number Display a diagnostic's numeric identifier along with its text. Use this option in
determining which arguments you need to supply to the diagnostic
suppression options (--diag_suppress, --diag_error, --diag_remark, and --
diag_warning). This option also indicates whether a diagnostic is
discretionary. A discretionary diagnostic is one whose severity can be
overridden. A discretionary diagnostic includes the suffix -D; otherwise, no
suffix is present. See the PRU Optimizing C/C++ Compiler User's Guide for
more information on understanding diagnostic messages.

--emit_warnings_as__ Treat all warnings as errors. This option cannot be used with the --
errors no_warnings option. The --diag_remark option takes precedence over this
option. This option takes precedence over the --diag_warning option.

--issue_remarks Issue remarks (nonserious warnings), which are suppressed by default.

SPRUHV6C-July 2014—-Revised July 2018 Linker Description 167
Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS

INSTRUMENTS
Linker Options www.ti.com
--no_warnings Suppress warning diagnostics (errors are still issued).
--set_error_limit=num Set the error limit to num, which can be any decimal value. The linker

8.4.8

8.4.9

abandons linking after this number of errors. (The default is 100.)

--verbose_diagnostics Provide verbose diagnostics that display the original source with line-wrap
and indicate the position of the error in the source line

Automatic Library Selection (--disable_auto_rts Option)

The --disable_auto_rts option disables the automatic selection of a run-time-support (RTS) library. See the
PRU Optimizing C/C++ Compiler User's Guide for details on the automatic selection process.

Do Not Remove Unused Sections (--unused_section_elimination Option)

In order to minimize the foot print, the ELF linker does not include a section that is not needed to resolve
any references in the final executable. Use --unused_section_elimination=off to disable this optimization.
The syntax for the option is:

--unused_section_elimination[=on|off]
The linker default behavior is equivalent to --unused_section_elimination=on.

8.4.10 Linker Command File Preprocessing (--disable_pp, --define and --undefine Options)

The linker preprocesses linker command files using a standard C preprocessor. Therefore, the command
files can contain well-known preprocessing directives such as #define, #include, and #if / #endif.

Three linker options control the preprocessor:

--disable_pp Disables preprocessing for command files
--define=name[=val] Predefines name as a preprocessor macro
--undefine=name Removes the macro name

The compiler has --define and --undefine options with the same meanings. However, the linker options are
distinct; only --define and --undefine options specified after --run_linker are passed to the linker. For
example:

clpru --define=F00=1 main.c --run_linker --define=BAR=2 Ink.cmd
The linker sees only the --define for BAR; the compiler only sees the --define for FOO.

When one command file #includes another, preprocessing context is carried from parent to child in the
usual way (that is, macros defined in the parent are visible in the child). However, when a command file is
invoked other than through #include, either on the command line or by the typical way of being named in
another command file, preprocessing context is not carried into the nested file. The exception to this is --
define and --undefine options, which apply globally from the point they are encountered. For example:

--define GLOBAL
#define LOCAL

#include "incfile.cmd" /* sees GLOBAL and LOCAL */
nestfile.cmd /* only sees GLOBAL */

Two cautions apply to the use of --define and --undefine in command files. First, they have global effect as
mentioned above. Second, since they are not actually preprocessing directives themselves, they are
subject to macro substitution, probably with unintended consequences. This effect can be defeated by
guoting the symbol name. For example:

--define MYSYM=123

--undefine MYSYM /* expands to --undefine 123 (1) */

--undefine "MYSYM"™ /* ahh, that"s better */

The linker uses the same search paths to find #include files as it does to find libraries. That is, #include
files are searched in the following places:

1. If the #include file name is in quotes (rather than <brackets>), in the directory of the current file

168

Linker Description SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Linker Options

2. In the list of directories specified with --library options or environment variables (see Section 8.4.16)

There are two exceptions: relative pathnames (such as "../name") always search the current directory; and
absolute pathnames (such as "/usr/tools/name") bypass search paths entirely.

The linker provides the built-in macro definitions listed in Table 8-10. The availability of these macros
within the linker is determined by the command-line options used, not the build attributes of the files being
linked. If these macros are not set as expected, confirm that your project's command line uses the correct
compiler option settings.

Table 8-10. Predefined PRU Macro Names

Macro Name Description

_ _DATE_ _ Expands to the compilation date in the form mmm dd yyyy

_ _FILE_ _ Expands to the current source filename

__PRU__ Always defined

__PRU_VO__ Defined to 1 if --silicon_version=0; otherwise it is undefined.

__PRU V1 _ Defined to 1 if --silicon_version=1; otherwise it is undefined.

__PRU V2 Defined to 1 if --silicon_version=2; otherwise it is undefined.

__PRU_V3 Defined to 1 if --silicon_version=3; otherwise it is undefined.

__PRU V4 __ Defined to 1 if --silicon_version=4; otherwise it is undefined.

_ _TI_COMPILER_VERSION_ _ Defined to a 7-9 digit integer, depending on if X has 1, 2, or 3 digits. The nhumber does

not contain a decimal. For example, version 3.2.1 is represented as 3002001. The
leading zeros are dropped to prevent the number being interpreted as an octal.

_ _TI_EABI_ _ Defined to 1 if EABI is enabled; otherwise, it is undefined.
_ _TIME_ _ Expands to the compilation time in the form "hh:mm:ss"

8.4.11 Error Correcting Code Testing (--ecc Options)

Error Correcting Codes (ECC) can be generated and placed in separate sections through the linker
command file.

To enable ECC support, include --ecc=on as a linker option on the command line. By default ECC
generation is off, even if the ECC directive and ECC specifiers are used in the linker command file. This
allows you to fully configure ECC in the linker command file while still being able to quickly turn the code
generation on and off via the command line. See Section 8.5.9 for details on linker command file syntax to
configure ECC support.

ECC uses extra bits to allow errors to be detected and/or corrected by a device. The ECC support
provided by the linker is compatible with the ECC support in TI Flash memory on various Tl devices. Tl
Flash memory uses a modified Hamming(72,64) code, which uses 8 parity bits for every 64 bits. Check
the documentation for your Flash memory to see if ECC is supported. (ECC for read-write memory is
handled completely in hardware at run time.)

After enabling ECC with the --ecc=0n option, you can use the following command-line options to test ECC
by injecting bit errors into the linked executable. These options let you specify an address where an error
should appear and a bitmask of bits in the code/data at that address to flip. You can specify the address
of the error absolutely or as an offset from a symbol. When a data error is injected, the ECC parity bits for
the data are calculated as if the error were not present. This simulates bit errors that might actually occur
and tests ECC's ability to correct different levels of errors.

The --ecc:data_error option injects errors into the load image at the specified location. The syntax is:
--ecc:data_error=(symbol+offset]|address)[,page],bitmask

The address is the location of the minimum addressable unit where the error is to be injected. A
symbol+offset can be used to specify the location of the error to be injected with a signed offset from that
symbol. The page number is needed to make the location non-ambiguous if the address occurs on
multiple memory pages. The bitmask is a mask of the bits to flip; its width should be the width of an
addressable unit.

SPRUHV6C-July 2014—-Revised July 2018 Linker Description 169

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Linker Options www.ti.com

For example, the following command line flips the least-significant bit in the byte at the address 0x100,
making it inconsistent with the ECC parity bits for that byte:

clpru test.c --ecc:data_error=0x100,0x01 -z -o test.out

The following command flips two bits in the third byte of the code for main():
clpru test.c --ecc:data_error=main+2,0x42 -z -0 test.out
The --ecc:ecc_error option injects errors into the ECC parity bits that correspond to the specified

location. Note that the ecc_error option can therefore only specify locations inside ECC input ranges,
whereas the data_error option can also specify errors in the ECC output memory ranges. The syntax is:

--ecc:ecc_error=(symbol+offset|address)[,page],bitmask

The parameters for this option are the same as for --ecc:data_error, except that the bitmask must be
exactly 8 bits. Mirrored copies of the affected ECC byte will also contain the same injected error.

An error injected into an ECC byte with --ecc:ecc_error may cause errors to be detected at run time in any
of the 8 data bytes covered by that ECC byte.

For example, the following command flips every bit in the ECC byte that contains the parity information for
the byte at 0x200:

The linker disallows injecting errors into memory ranges that are neither an ECC range nor the input range
for an ECC range. The compiler can only inject errors into initialized sections.

8.4.12 Define an Entry Point (--entry_point Option)

The memory address at which a program begins executing is called the entry point. When a loader loads
a program into target memory, the program counter (PC) must be initialized to the entry point; the PC then
points to the beginning of the program.

The linker can assign one of four values to the entry point. These values are listed below in the order in
which the linker tries to use them. If you use one of the first three values, it must be an external symbol in
the symbol table.

» The value specified by the --entry_point option. The syntax is:
--entry_point= global_symbol

where global_symbol defines the entry point and must be defined as an external symbol of the input
files. The external symbol name of C or C++ objects may be different than the name as declared in the
source language; refer to the PRU Optimizing C/C++ Compiler User's Guide.

e The value of symbol _c_int0O0 (if present). The _c_int00 symbol must be the entry point if you are
linking code produced by the C compiler.

» The value of symbol main (if present)
* 0 (default value)

This example links filel.obj and file2.obj. The symbol begin is the entry point; begin must be defined as
external in filel or file2.

clpru --run_linker --entry_point=begin filel.obj file2.obj

See Section 8.6.1 for information about referring to linker symbols in C/C++ code.

8.4.13 Set Default Fill Value (--fill_value Option)

The --fill_value option fills the holes formed within output sections. The syntax for the option is:
--fill_value= value

The argument value is a 32-bit constant (up to eight hexadecimal digits). If you do not use --fill_value, the
linker uses 0 as the default fill value.

This example fills holes with the hexadecimal value ABCDABCD:
clpru --run_linker --fill_value=0xABCDABCD filel.obj file2.obj

170

Linker Description SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Linker Options

8.4.14 Define Heap Size (--heap_size Option)

The C/C++ compiler uses an uninitialized section called .sysmem for the C run-time memory pool used by
malloc(). You can set the size of this memory pool at link time by using the --heap_size option. The syntax
for the --heap_size option is:

--heap_size= size

The size must be a constant. This example defines a 4K byte heap:

clpru --run_linker --heap_size=0x1000 /* defines a 4k heap (.sysmem section)*/

The linker creates the .sysmem section only if there is a .sysmem section in an input file.

The linker also creates a global symbol __TI_SYSMEM_SIZE and assigns it a value equal to the size of
the heap. The default size is 256 bytes. See Section 8.6.1 for information about referring to linker symbols
in C/C++ code.

8.4.15 Hiding Symbols

Symbol hiding prevents the symbol from being listed in the output file's symbol table. While localization is
used to prevent name space clashes in a link unit, symbol hiding is used to obscure symbols which should
not be visible outside a link unit. Such symbol’'s names appear only as empty strings or “no name” in
object file readers. The linker supports symbol hiding through the --hide and --unhide options.

The syntax for these options are:
--hide=' pattern’
--unhide=" pattern '

The pattern is a string with optional wildcards ? or *. Use ? to match a single character and use * to match
zero or more characters.

The --hide option hides global symbols with a linkname matching the pattern. It hides symbols matching
the pattern by changing the name to an empty string. A global symbol that is hidden is also localized.

The --unhide option reveals (un-hides) global symbols that match the pattern that are hidden by the --hide
option. The --unhide option excludes symbols that match pattern from symbol hiding provided the pattern
defined by --unhide is more restrictive than the pattern defined by --hide.

These options have the following properties:

* The --hide and --unhide options can be specified more than once on the command line.

» The order of --hide and --unhide has no significance.

* A symbol is matched by only one pattern defined by either --hide or --unhide.

« A symbol is matched by the most restrictive pattern. Pattern A is considered more restrictive than
Pattern B, if Pattern A matches a narrower set than Pattern B.

» Itis an error if a symbol matches patterns from --hide and --unhide and one does not supersede the
other. Pattern A supersedes pattern B if A can match everything B can and more. If Pattern A
supersedes Pattern B, then Pattern B is said to more restrictive than Pattern A.

» These options affect final and partial linking.
In map files these symbols are listed under the Hidden Symbols heading.

SPRUHV6C-July 2014—-Revised July 2018 Linker Description 171

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Linker Options www.ti.com

8.4.16 Alter the Library Search Algorithm (--library Option, --search_path Option, and
PRU_C_DIR Environment Variable)

Usually, when you want to specify a file as linker input, you simply enter the filename; the linker looks for
the file in the current directory. For example, suppose the current directory contains the library object.lib. If
this library defines symbols that are referenced in the file filel.obj, this is how you link the files:

clpru --run_linker filel.obj object.lib

If you want to use a file that is not in the current directory, use the --library linker option. The --library
option's short form is -I. The syntax for this option is:

--library=[pathname] filename

The filename is the name of an archive, an object file, or linker command file. You can specify up to 128
search paths.

The --library option is not required when one or more members of an object library are specified for input
to an output section. For more information about allocating archive members, see Section 8.5.5.5.

You can augment the linker's directory search algorithm by using the --search_path linker option or the
environment variable. The linker searches for object libraries and command files in the following order:

1. It searches directories named with the --search_path linker option. The --search_path option must
appear before the --library option on the command line or in a command file.

2. It searches directories named with PRU_C_DIR.

3. If PRU_C DIR is not set, it searches directories named with the assembler's PRU_A_DIR environment
variable.

4. It searches the current directory.

8.4.16.1 Name an Alternate Library Directory (--search_path Option)

The --search_path option names an alternate directory that contains input files. The --search_path option's
short form is -1. The syntax for this option is:

--search_path= pathname
The pathname names a directory that contains input files.

When the linker is searching for input files named with the --library option, it searches through directories
named with --search_path first. Each --search_path option specifies only one directory, but you can have
several --search_path options per invocation. When you use the --search_path option to name an
alternate directory, it must precede any --library option used on the command line or in a command file.

For example, assume that there are two archive libraries called r.lib and lib2.lib that reside in Id and Id2
directories. The table below shows the directories that r.lib and lib2.lib reside in, how to set environment
variable, and how to use both libraries during a link. Select the row for your operating system:

Operating System Enter

clpru --run_linker fl.obj f2.obj --search_path=/1d --search_path=/1d2

UNIX (Bourne shell) —-library=r_lib --library=lib2_1lib
clpru --run_linker fl.obj f2.0bj --search_path=\ld --search_path=\1d2
Windows —-library=r_lib --library=1ib2._1ib
172 Linker Description SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Linker Options

8.4.16.2 Name an Alternate Library Directory (PRU_C_DIR Environment Variable)

An environment variable is a system symbol that you define and assign a string to. The linker uses an
environment variable named PRU_C_DIR to name alternate directories that contain object libraries. The
command syntaxes for assigning the environment variable are:

Operating System Enter
UNIX (Bourne shell) PRU_C_DIR=" pathname,; pathname,; . .. "; export PRU_C_DIR
Windows set PRU_C_DIR= pathname; ; pathname, ; . . .

The pathnames are directories that contain input files. Use the --library linker option on the command line
or in a command file to tell the linker which library or linker command file to search for. The pathnames
must follow these constraints:

» Pathnames must be separated with a semicolon.

» Spaces or tabs at the beginning or end of a path are ignored. For example the space before and after
the semicolon in the following is ignored:
set PRU_C_DIR= c:\path\one\to\tools ; c:\path\two\to\tools
e Spaces and tabs are allowed within paths to accommodate Windows directories that contain spaces.
For example, the pathnames in the following are valid:
set PRU_C_DIR=c:\first path\to\tools;d:\second path\to\tools
In the example below, assume that two archive libraries called r.lib and lib2.lib reside in Id and 1d2

directories. The table below shows how to set the environment variable, and how to use both libraries
during a link. Select the row for your operating system:

Operating System Invocation Command
PRU_C_DIR="/1d ;/1d2"; export PRU_C_DIR;
UNIX (Bourne shell) clpru --run_linker fl.obj f2.obj --library=r.lib --library=lib2_lib

PRU_C_DIR=\Id;\1d2
Windows clpru --run linker fl.obj f2.obj --library=r.lib --library=lib2.lib

The environment variable remains set until you reboot the system or reset the variable by entering:

Operating System Enter
UNIX (Bourne shell) unset PRU_C_DIR
Windows set PRU_C DIR=

The assembler uses an environment variable named PRU_A_DIR to name alternate directories that
contain copy/include files or macro libraries. If PRU_C_DIR is not set, the linker searches for object
libraries in the directories named with PRU_C_DIR. For information about PRU_C_DIR, see Section 4.4.2.
For more information about object libraries, see Section 8.6.3.

SPRUHV6C-July 2014—-Revised July 2018 Linker Description 173

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Linker Options www.ti.com

8.4.16.3 Exhaustively Read and Search Libraries (--reread_libs and --priority Options)

There are two ways to exhaustively search for unresolved symbols:
» Reread libraries if you cannot resolve a symbol reference (--reread_libs).
e Search libraries in the order that they are specified (--priority).

The linker normally reads input files, including archive libraries, only once when they are encountered on
the command line or in the command file. When an archive is read, any members that resolve references
to undefined symbols are included in the link. If an input file later references a symbol defined in a
previously read archive library, the reference is not resolved.

With the --reread_libs option, you can force the linker to reread all libraries. The linker rereads libraries
until no more references can be resolved. Linking using --reread_libs may be slower, so you should use it
only as needed. For example, if a.lib contains a reference to a symbol defined in b.lib, and b.lib contains a
reference to a symbol defined in a.lib, you can resolve the mutual dependencies by listing one of the
libraries twice, as in:

clpru --run_linker --library=a.lib --library=b.lib --library=a.lib

or you can force the linker to do it for you:
clpru --run_linker --reread_libs --library=a.lib --library=b.lib

The --priority option provides an alternate search mechanism for libraries. Using --priority causes each
unresolved reference to be satisfied by the first library that contains a definition for that symbol. For
example:

objfile references A

libl defines B

1ib2 defines A, B; obj defining A references B

% clpru --run_linker objfile libl lib2

Under the existing model, objfile resolves its reference to A in lib2, pulling in a reference to B, which
resolves to the B in lib2.

Under --priority, obijfile resolves its reference to A in lib2, pulling in a reference to B, but now B is resolved
by searching the libraries in order and resolves B to the first definition it finds, namely the one in lib1.

The --priority option is useful for libraries that provide overriding definitions for related sets of functions in
other libraries without having to provide a complete version of the whole library.

For example, suppose you want to override versions of malloc and free defined in the rtspruv3_le.lib
without providing a full replacement for . Using --priority and linking your new library before rtspruv3_le.lib
guarantees that all references to malloc and free resolve to the new library.

The --priority option is intended to support linking programs with SYS/BIOS where situations like the one
illustrated above occur.

174

Linker Description SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Linker Options

8.4.17 Change Symbol Localization

Symbol localization changes symbol linkage from global to local (static). This is used to obscure global
symbols in a library which should not be visible outside the library, but must be global because they are
accessed by several modules in the library. The linker supports symbol localization through the --localize
and --globalize linker options.

The syntax for these options are:
--localize="' pattern '
--globalize="' pattern '

The pattern is a string with optional wildcards ? or *. Use ? to match a single character and use * to match
zero or more characters.

The --localize option changes the symbol linkage to local for symbols matching the pattern.

The --globalize option changes the symbol linkage to global for symbols matching the pattern. The --
globalize option only affects symbols that are localized by the --localize option. The --globalize option
excludes symbols that match the pattern from symbol localization, provided the pattern defined by --
globalize is more restrictive than the pattern defined by --localize.

See Section 8.4.2 for information about using C/C++ identifiers in linker options such as --localize and --
globalize.

These options have the following properties:

e The --localize and --globalize options can be specified more than once on the command line.

» The order of --localize and --globalize options has no significance.

» A symbol is matched by only one pattern defined by either --localize or --globalize.

* A symbol is matched by the most restrictive pattern. Pattern A is considered more restrictive than
Pattern B, if Pattern A matches a narrower set than Pattern B.

» ltis an error if a symbol matches patterns from --localize and --globalize and if one does not supersede
other. Pattern A supersedes pattern B if A can match everything B can, and some more. If Pattern A
supersedes Pattern B, then Pattern B is said to more restrictive than Pattern A.

» These options affect final and partial linking.
In map files these symbols are listed under the Localized Symbols heading.

8.4.17.1 Make All Global Symbols Static (--make_static Option)

The --make_static option makes all global symbols static. Static symbols are not visible to externally linked
modules. By making global symbols static, global symbols are essentially hidden. This allows external
symbols with the same name (in different files) to be treated as unique.

The --make_static option effectively nullifies all .global assembler directives. All symbols become local to
the module in which they are defined, so no external references are possible. For example, assume
filel.obj and file2.0bj both define global symbols called EXT. By using the --make_static option, you can
link these files without conflict. The symbol EXT defined in filel.obj is treated separately from the symbol
EXT defined in file2.0bj.

clpru --run_linker --make_static filel.obj file2.obj
The --make_static option makes all global symbols static. If you have a symbol that you want to remain
global and you use the --make_static option, you can use the --make_global option to declare that symbol

to be global. The --make_global option overrides the effect of the --make_static option for the symbol that
you specify. The syntax for the --make_global option is:

--make_global= global_symbol

SPRUHV6C-July 2014—-Revised July 2018 Linker Description 175

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Linker Options www.ti.com

8.4.18 Create a Map File (--map_file Option)

The syntax for the --map_file option is:

--map_file= filename

The linker map describes:

Memory configuration

Input and output section allocation

Linker-generated copy tables

The addresses of external symbols after they have been relocated
Hidden and localized symbols

The map file contains the name of the output module and the entry point; it can also contain up to three
tables:

A table showing the new memory configuration if any nondefault memory is specified (memory
configuration). The table has the following columns; this information is generated on the basis of the
information in the MEMORY directive in the linker command file:

— Name. This is the name of the memory range specified with the MEMORY directive.

— Origin. This specifies the starting address of a memory range.

— Length. This specifies the length of a memory range.

— Unused. This specifies the total amount of unused (available) memory in that memory area.
— Attributes. This specifies one to four attributes associated with the named range:

specifies that the memory can be read.

specifies that the memory can be written to.

specifies that the memory can contain executable code.
specifies that the memory can be initialized.

- xXs®D

For more information about the MEMORY directive, see Section 8.5.4.

A table showing the linked addresses of each output section and the input sections that make up the
output sections (section placement map). This table has the following columns; this information is
generated on the basis of the information in the SECTIONS directive in the linker command file:

— Output section. This is the name of the output section specified with the SECTIONS directive.

— Origin. The first origin listed for each output section is the starting address of that output section.
The indented origin value is the starting address of that portion of the output section.

— Length. The first length listed for each output section is the length of that output section. The
indented length value is the length of that portion of the output section.

— Attributes/input sections. This lists the input file or value associated with an output section. If the
input section could not be allocated, the map file will indicate this with "FAILED TO ALLOCATE".

For more information about the SECTIONS directive, see Section 8.5.5.
A table showing each external symbol and its address sorted by symbol name.
A table showing each external symbol and its address sorted by symbol address.

The following example links filel.obj and file2.obj and creates a map file called map.out:
clpru --run_linker filel.obj file2.obj --map_file=map.out

Example 8-23 shows an example of a map file.

176 Linker Description SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Linker Options

8.4.19 Managing Map File Contents (--mapfile_contents Option)

The --mapfile_contents option assists with managing the content of linker-generated map files. The syntax
for the --mapfile_contents option is:

--mapfile_contents= filter[, filter]

When the --map_file option is specified, the linker produces a map file containing information about
memory usage, placement information about sections that were created during a link, details about linker-
generated copy tables, and symbol values.

The --mapfile_contents option provides a mechanism for you to control what information is included in or
excluded from a map file. When you specify --mapfile_contents=help from the command line, a help
screen listing available filter options is displayed. The following filter options are available:

Attribute Description Default State
copytables Copy tables On
entry Entry point On
load_addr Display load addresses Off
memory Memory ranges On
modules Module view On
sections Sections On
sym_defs Defined symbols per file Off
sym_dp Symbols sorted by data page On
sym_name Symbols sorted by name On
sym_runaddr Symbols sorted by run address On
all Enables all attributes

none Disables all attributes

The --mapfile_contents option controls display filter settings by specifying a comma-delimited list of display
attributes. When prefixed with the word no, an attribute is disabled instead of enabled. For example:
--mapfile_contents=copytables,noentry

--mapfile_contents=all,nocopytables

--mapfile_contents=none,entry

By default, those sections that are currently included in the map file when the --map_file option is specified
are included. The filters specified in the --mapfile_contents options are processed in the order that they
appear in the command line. In the third example above, the first filter, none, clears all map file content.
The second filter, entry, then enables information about entry points to be included in the generated map
file. That is, when --mapfile_contents=none,entry is specified, the map file contains only information about
entry points.

The load_addr and sym_defs attributes are both disabled by default.

If you turn on the load_addr filter, the map file includes the load address of symbols that are included in
the symbol list in addition to the run address (if the load address is different from the run address).

You can use the sym_defs filter to include information sorted on a file by file basis. You may find it useful
to replace the sym_name, sym_dp, and sym_runaddr sections of the map file with the sym_defs section
by specifying the following --mapfile_contents option:
--mapfile_contents=nosym_name,nosym_dp,nosym_runaddr,sym_defs

By default, information about global symbols defined in an application are included in tables sorted by

name, data page, and run address. If you use the --mapfile_contents=sym_defs option, static variables
are also listed.

SPRUHV6C-July 2014—-Revised July 2018 Linker Description 177

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Linker Options www.ti.com

8.4.20 Disable Name Demangling (--no_demangle)
By default, the linker uses demangled symbol names in diagnostics. For example:

undefined symbol first referenced in file
ANewClass::getValue() test.obj

The --no_demangle option disables the demangling of symbol names in diagnostics. For example:

undefined symbol first referenced in file
_ZN9ANewClass8getValueEv test.obj

8.4.21 Merging of Symbolic Debugging Information
By default, the linker eliminates duplicate entries of symbolic debugging information. Such duplicate
information is commonly generated when a C program is compiled for debugging. For example:

-[header.h]-
typedef struct

{
<define some structure members>
Y XYZ;

-[f1.c 1-
#include "header.h"

-[f2.c 1-
#include ""header.h"

When these files are compiled for debugging, both f1.0bj and f2.0bj have symbolic debugging entries to
describe type XYZ. For the final output file, only one set of these entries is necessary. The linker
eliminates the duplicate entries automatically.

8.4.22 Strip Symbolic Information (--no_symtable Option)

The --no_symtable option creates a smaller output module by omitting symbol table information and line
number entries. The --no_sym_table option is useful for production applications when you do not want to
disclose symbolic information to the consumer.

This example links filel.obj and file2.obj and creates an output module, stripped of line numbers and
symbol table information, named nosym.out:

clpru --run_linker --output_file=nosym.out --no_symtable filel.obj file2.obj

Using the --no_symtable option limits later use of a symbolic debugger.

Stripping Symbolic Information

NOTE: The --no_symtable option is deprecated. To remove symbol table information, use the
strippru utility as described in Section 11.4.

178 Linker Description SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Linker Options

8.4.23 Name an Output Module (--output_file Option)

The linker creates an output module when no errors are encountered. If you do not specify a filename for
the output module, the linker gives it the default name a.out. If you want to write the output module to a
different file, use the --output_file option. The syntax for the --output_file option is:

--output_file= filename
The filename is the new output module name.

This example links filel.obj and file2.obj and creates an output module named run.out:
clpru --run_linker --output_file=run.out filel.obj file2.obj

8.4.24 Prioritizing Function Placement (--preferred_order Option)

The compiler prioritizes the placement of a function relative to others based on the order in which --
preferred_order options are encountered during the linker invocation. The syntax is:

--preferred_order=function specification

Refer to the PRU Optimizing C/C++ Compiler User's Guide for details on the program cache layout tool,
which is impacted by --preferred_option.

8.4.25 C Language Options (--ram_model and --rom_model Options)
The --ram_model and --rom_model options cause the linker to use linking conventions that are required by
the C compiler.
» The --ram_model option tells the linker to initialize variables at load time.
e The --rom_model option tells the linker to autoinitialize variables at run time.

For more information, see Section 8.10 and Section 3.3.2.

8.4.26 Retain Discarded Sections (--retain Option)

When --unused_section_elimination is on, the ELF linker does not include a section in the final link if it is
not needed in the executable to resolve references. The --retain option tells the linker to retain a list of
sections that would otherwise not be retained. This option accepts the wildcards ** and "?'. When
wildcards are used, the argument should be in quotes. The syntax for this option is:
--retain=sym_or_scn_spec
The --retain option take one of the following forms:
e --retain=symbol_spec
Specifying the symbol format retains sections that define symbol_spec. For example, this code retains
sections that define symbols that start with init:
--retain="init*"
You cannot specify --retain="*",
» --retain=file_spec(scn_spec|, scn_spec, ...]
Specifying the file format retains sections that match one or more scn_spec from files matching the
file_spec. For example, this code retains .intvec sections from all input files:
--retain="*(.int*)"
You can specify --retain="*(*)' to retain all sections from all input files. However, this does not prevent
sections from library members from being optimized out.

SPRUHV6C-July 2014—-Revised July 2018 Linker Description 179

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Linker Options www.ti.com

e --retain=ar_spec<mem_spec, [mem_spec, ...>(scn_spec][, scn_spec, ...]

Specifying the archive format retains sections matching one or more scn_spec from members
matching one or more mem_spec from archive files matching ar_spec. For example, this code retains
the .text sections from printf.obj in the rtspruv3_le.lib library:

--retain=rtspruv3_le._lib<printf.obj>(.text)

If the library is specified with the --library option (--library=rtspruv3_le.lib) the library search path is
used to search for the library. You cannot specify *<*>(*)".

8.4.27 Create an Absolute Listing File (--run_abs Option)

The --run_abs option produces an output file for each file linked. These files are named with the input
filenames and an extension of .abs. Header files, however, do not generate a corresponding .abs file.

8.4.28 Scan All Libraries for Duplicate Symbol Definitions (--scan_libraries)

The --scan_libraries option scans all libraries during a link looking for duplicate symbol definitions to those
symbols that are actually included in the link. The scan does not consider absolute symbols or symbols
defined in COMDAT sections. The --scan_libraries option helps determine those symbols that were
actually chosen by the linker over other existing definitions of the same symbol in a library.

The library scanning feature can be used to check against unintended resolution of a symbol reference to
a definition when multiple definitions are available in the libraries.

8.4.29 Define Stack Size (--stack_size Option)

The PRU C/C++ compiler uses an uninitialized section, .stack, to allocate space for the run-time stack.
You can set the size of this section in bytes at link time with the --stack_size option. The syntax for the --
stack_size option is:

--stack_size= size
The size must be a constant and is in bytes. This example defines a 4K byte stack:
clpru --run_linker --stack_size=0x1000 /* defines a 4K heap (.stack section)*/

If you specified a different stack size in an input section, the input section stack size is ignored. Any
symbols defined in the input section remain valid; only the stack size is different.

When the linker defines the .stack section, it also defines a global symbol, _ Tl STACK_SIZE, and
assigns it a value equal to the size of the section. The default software stack size is . See Section 8.6.1 for
information about referring to linker symbols in C/C++ code.

8.4.30 Enforce Strict Compatibility (--strict_compatibility Option)

The linker performs more conservative and rigorous compatibility checking of input object files when you
specify the --strict_compatibility option. Using this option guards against additional potential compatibility
issues, but may signal false compatibility errors when linking in object files built with an older toolset, or
with object files built with another compiler vendor's toolset. To avoid issues with legacy libraries, the --
strict_compatibility option is turned off by default.

8.4.31 Mapping of Symbols (--symbol_map Option)

Symbol mapping allows a symbol reference to be resolved by a symbol with a different name. Symbol
mapping allows functions to be overridden with alternate definitions. This feature can be used to patch in
alternate implementations, which provide patches (bug fixes) or alternate functionality. The syntax for the -
-symbol_map option is:

--symbol_map= refname=defname

For example, the following code makes the linker resolve any references to foo by the definition
foo_patch:

--symbol_map="foo=foo_patch*

180

Linker Description SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Linker Options

8.4.32 Introduce an Unresolved Symbol (--undef_sym Option)

The --undef_sym option introduces the linkname for an unresolved symbol into the linker's symbol table.
This forces the linker to search a library and include the member that defines the symbol. The linker must
encounter the --undef_sym option before it links in the member that defines the symbol. The syntax for the
--undef_sym option is:

--undef_sym= symbol

For example, suppose a library named rtspruv3_le.lib contains a member that defines the symbol symtab;
none of the object files being linked reference symtab. However, suppose you plan to relink the output
module and you want to include the library member that defines symtab in this link. Using the --undef_sym
option as shown below forces the linker to search rtspruv3_le.lib for the member that defines symtab and
to link in the member.

clpru --run_linker --undef _sym=symtab filel.obj file2.obj rtspruv3 le.lib

If you do not use --undef_sym, this member is not included, because there is no explicit reference to it in
filel.obj or file2.obj.

8.4.33 Display a Message When an Undefined Output Section Is Created (--warn_sections)

In a linker command file, you can set up a SECTIONS directive that describes how input sections are
combined into output sections. However, if the linker encounters one or more input sections that do not
have a corresponding output section defined in the SECTIONS directive, the linker combines the input
sections that have the same name into an output section with that name. By default, the linker does not
display a message to tell you that this occurred.

You can use the --warn_sections option to cause the linker to display a message when it creates a new
output section.

For more information about the SECTIONS directive, see Section 8.5.5. For more information about the
default actions of the linker, see Section 8.7.

8.4.34 Generate XML Link Information File (--xml_link_info Option)

The linker supports the generation of an XML link information file through the --xml_link_info=file option.
This option causes the linker to generate a well-formed XML file containing detailed information about the
result of a link. The information included in this file includes all of the information that is currently produced
in a linker generated map file. See Appendix B for specifics on the contents of the generated XML file.

8.4.35 Zero Initialization (--zero_init Option)

The C and C++ standards require that global and static variables that are not explicitly initialized must be
set to 0 before program execution. The C/C++ compiler supports preinitialization of uninitialized variables
by default. To turn this off, specify the linker option --zero_init=off.

The syntax for the --zero_init option is:
--zero_init[={on|off}]

Disabling Zero Initialization Not Recommended

NOTE: In general, this option it is not recommended. If you turn off zero initialization, automatic
initialization of uninitialized global and static objects to zero will not occur. You are then
expected to initialize these variables to zero in some other manner.

SPRUHV6C-July 2014—-Revised July 2018 Linker Description 181

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

8.5

Linker Command Files

Linker command files allow you to put linker options and directives in a file; this is useful when you invoke
the linker often with the same options and directives. Linker command files are also useful because they
allow you to use the MEMORY and SECTIONS directives to customize your application. You must use
these directives in a command file; you cannot use them on the command line.

Linker command files are ASCII files that contain one or more of the following:

« Input filenames, which specify object files, archive libraries, or other command files. (If a command file
calls another command file as input, this statement must be the last statement in the calling command
file. The linker does not return from called command files.)

» Linker options, which can be used in the command file in the same manner that they are used on the
command line

 The MEMORY and SECTIONS linker directives. The MEMORY directive defines the target memory
configuration (see Section 8.5.4). The SECTIONS directive controls how sections are built and
allocated (see Section 8.5.5.)

» Assignment statements, which define and assign values to global symbols

To invoke the linker with a command file, enter the clpru --run_linker command and follow it with the name
of the command file:

clpru --run_linker command_filename

The linker processes input files in the order that it encounters them. If the linker recognizes a file as an
object file, it links the file. Otherwise, it assumes that a file is a command file and begins reading and
processing commands from it. Command filenames are case sensitive, regardless of the system used.

Example 8-1 shows a sample linker command file called link.cmd.

Example 8-1. Linker Command File

a.obj
b.obj

/* First input filename */
/* Second input filename */

--output_file=prog.out /* Option to specify output file */
--map_TFile=prog.map /* Option to specify map file */

The sample file in Example 8-1 contains only flenames and options. (You can place comments in a
command file by delimiting them with /* and */.) To invoke the linker with this command file, enter:

clpru --run_linker link.cmd

You can place other parameters on the command line when you use a command file:
clpru --run_linker --relocatable link.cmd c.obj d.obj

The linker processes the command file as soon as it encounters the filename, so a.obj and b.obj are
linked into the output module before c.obj and d.obj.

You can specify multiple command files. If, for example, you have a file called names.Ist that contains
filenames and another file called dir.cmd that contains linker directives, you could enter:

clpru --run_linker names.lIst dir.cmd

One command file can call another command file; this type of nesting is limited to 16 levels. If a command

file calls another command file as input, this statement must be the last statement in the calling command
file.

182

Linker Description SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

I

TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

Blanks and blank lines are insignificant in a command file except as delimiters. This also applies to the
format of linker directives in a command file. Example 8-2 shows a sample command file that contains
linker directives.

Example 8-2. Command File With Linker Directives

a.obj b.obj c.obj /* Input filenames */
--output_file=prog.out /* Options */
--map_TFile=prog.map

MEMORY /* MEMORY directive */
{
FAST_MEM: origin = 0x0100 length = 0x0100
SLOW_MEM: origin = 0x7000 length = 0x1000
3
SECTIONS /* SECTIONS directive */
{
.text: > SLOW_MEM
.data: > SLOW_MEM
-bss: > FAST_MEM
}
For more information, see Section 8.5.4 for the MEMORY directive, and Section 8.5.5 for the SECTIONS
directive.
8.5.1 Reserved Names in Linker Command Files
The following names (in both uppercase and lowercase) are reserved as keywords for linker directives. Do
not use them as symbol or section names in a command file.
In addition, any section names used by the Tl tools are reserved from being used as the prefix for other
names, unless the section will be a subsection of the section name used by the Tl tools. For example,
section names may not begin with .debug.
8.5.2 Constants in Linker Command Files
You can specify constants with either of two syntax schemes: the scheme used for specifying decimal,
octal, or hexadecimal constants (but not binary constants) used in the assembler (see Section 4.6) or the
scheme used for integer constants in C syntax.
Examples:
Format Decimal Octal Hexadecimal
Assembler format 32 40q 020h
C format 32 040 0x20
8.5.3 Accessing Files and Libraries from a Linker Command File
Many applications use custom linker command files (or LCFs) to control the placement of code and data in
target memory. For example, you may want to place a specific data object from a specific file into a
specific location in target memory. This is simple to do using the available LCF syntax to reference the
desired object file or library. However, a problem that many developers run into when they try to do this is
a linker generated "file not found" error when accessing an object file or library from inside the LCF that
has been specified earlier in the command-line invocation of the linker. Most often, this error occurs
because the syntax used to access the file on the linker command-line does not match the syntax that is
used to access the same file in the LCF.
SPRUHV6C-July 2014—-Revised July 2018 Linker Description 183

Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

Consider a simple example. Imagine that you have an application that requires a table of constants called
"app_coeffs" to be defined in a memory area called "DDR". Assume also that the "app_coeffs" data object
is defined in a .data section that resides in an object file, app_coeffs.obj. app_coeffs.obj is then included in
the object file library app_data.lib. In your LCF, you can control the placement of the "app_coeffs" data
object as follows:

SECTIONS
{

.coeffs: { app_data.lib<app_coeffs.obj>(.data) } > DDR

}

Now assume that the app_data.lib object library resides in a sub-directory called "lib" relative to where you
are building the application. In order to gain access to app_data.lib from the build command-line, you can
use a combination of the —i and —I options to set up a directory search path which the linker can use to
find the app_data.lib library:

The —i option adds the lib sub-directory to the directory search path and the —| option instructs the linker to
look through the directories in the directory search path to find the app_data.lib library. However, if you do
not update the reference to app_data.lib in mylnk.cmd, the linker will fail to find the app_data.lib library and
generate a "file not found" error. The reason is that when the linker encounters the reference to
app_data.lib inside the SECTIONS directive, there is no —| option preceding the reference. Therefore, the
linker tries to open app_data.lib in the current working directory.

In essence, the linker has a few different ways of opening files:

» If there is a path specified, the linker will look for the file in the specified location. For an absolute path,
the linker will try to open the file in the specified directory. For a relative path, the linker will follow the
specified path starting from the current working directory and try to open the file at that location.

» If there is no path specified, the linker will try to open the file in the current working directory.

» If a—I option precedes the file reference, then the linker will try to find and open the referenced file in
one of the directories in the directory search path. The directory search path is set up via —i options
and environment variables (like C_DIR and).

As long as a file is referenced in a consistent manner on the command line and throughout any applicable
LCFs, the linker will be able to find and open your object files and libraries.

Returning to the earlier example, you can insert a —I option in front of the reference to app_data.lib in
mylnk.cmd to ensure that the linker will find and open the app_data.lib library when the application is built:

SECTIONS
{

.coeffs: { -1 app_data.lib<app_coeffs.obj>(.data) } > DDR

}

Another benefit to using the —| option when referencing a file from within an LCF is that if the location of
the referenced file changes, you can modify the directory search path to incorporate the new location of
the file (using —i option on the command line, for example) without having to modify the LCF.

184

Linker Description SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

I

TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

8.5.4 The MEMORY Directive

The linker determines where output sections are allocated into memory; it must have a model of target
memory to accomplish this. The MEMORY directive allows you to specify a model of target memory so
that you can define the types of memory your system contains and the address ranges they occupy. The
linker maintains the model as it allocates output sections and uses it to determine which memory locations
can be used for object code.

The memory configurations of PRU systems differ from application to application. The MEMORY directive
allows you to specify a variety of configurations. After you use MEMORY to define a memory model, you
can use the SECTIONS directive to allocate output sections into defined memory.

For more information, see Section 2.5.

8.5.4.1 Default Memory Model

If you do not use the MEMORY directive, the linker uses a default memory model that is based on the
PRU architecture. This model assumes that the full 32-bit address space (2 locations) is present in the
system and available for use. For more information about the default memory model, see Section 8.7.

8.5.4.2 MEMORY Directive Syntax

The MEMORY directive identifies ranges of memory that are physically present in the target system and
can be used by a program. Each range has several characteristics:

* Name
e Starting address
* Length

» Optional set of attributes
e Optional fill specification

When you use the MEMORY directive, be sure to identify all memory ranges that are available for the
program to access at run time. Memory defined by the MEMORY directive is configured; any memory that
you do not explicitly account for with MEMORY is unconfigured. The linker does not place any part of a
program into unconfigured memory. You can represent nonexistent memory spaces by simply not
including an address range in a MEMORY directive statement.

The MEMORY directive is specified in a command file by the word MEMORY (uppercase), followed by a
list of memory range specifications enclosed in braces. The MEMORY directive in Example 8-3 defines a
system that has 4K bytes of fast external memory at address 0x0000 0000, 2K bytes of slow external
memory at address 0x0000 1000 and 4K bytes of slow external memory at address 0x1000 0000. It also
demonstrates the use of memory range expressions as well as start/end/size address operators (see
Example 8-4).

Example 8-3. The MEMORY Directive

/ /
/* Sample command file with MEMORY directive */
/ /
filel.obj file2.0obj /* Input files */
--output_file=prog.out /* Options */
MEMORY

{

FAST_MEM (RX): origin

0x00000000 length 0x00001000 CREGISTER=2

SLOW_MEM (RW): origin = 0x00001000 length = 0x00000800
EXT_MEM (RX): origin = 0x10000000 length = 0x00001000
SPRUHV6C-July 2014—-Revised July 2018 Linker Description 185

Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

Linker Command Files

13 TEXAS
INSTRUMENTS

www.ti.com

The general syntax for the MEMORY directive is:

MEMORY

{

name 1 [(attr)] : origin = expression , length = expression [CREGISTER = constant] [, fill =
constant]

name n [(attr)] : origin = expression , length = expression [, fill = constant]

name

attr

origin

length

CREGISTE

R

fill

NOTE:

names a memory range. A memory name can be one to 64 characters; valid characters
include A-Z, a-z, $, ., and _. The names have no special significance to the linker; they
simply identify memory ranges. Memory range names are internal to the linker and are not
retained in the output file or in the symbol table. All memory ranges must have unique
names and must not overlap.

specifies one to four attributes associated with the named range. Attributes are optional;
when used, they must be enclosed in parentheses. Attributes restrict the allocation of
output sections into certain memory ranges. If you do not use any attributes, you can
allocate any output section into any range with no restrictions. Any memory for which no
attributes are specified (including all memory in the default model) has all four attributes.
Valid attributes are:

R specifies that the memory can be read.

w specifies that the memory can be written to.

X specifies that the memory can contain executable code.
I specifies that the memory can be initialized.

specifies the starting address of a memory range; enter as origin, org, or 0. The value,
specified in bytes, is a 32-bit integer constant expression, which can be decimal, octal, or
hexadecimal.

specifies the length of a memory range; enter as length, len, or |. The value, specified in
bytes, is a 32-bit integer constant expression, which can be decimal, octal, or hexadecimal.

The CREGISTER specifier associates a PRU constant table entry with a memory range.
That constant table entry is then used when the memory name is specified with the
"cregister” type attribute in C code. See the "Type Attributes" section of the PRU
Optimizing C/C++ Compiler User's Guide (SPRUHV?7).

specifies a fill character for the memory range; enter as fill or f. Fills are optional. The value
is an integer constant and can be decimal, octal, or hexadecimal. The fill value is used to
fill areas of the memory range that are not allocated to a section. (See Section 8.5.9.3 for
virtual filling of memory ranges when using Error Correcting Code (ECC).)

Filling Memory Ranges

If you specify fill values for large memory ranges, your output file will be very large because
filing a memory range (even with 0s) causes raw data to be generated for all unallocated
blocks of memory in the range.

186 Linker Description

SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C
http://www.ti.com/lit/pdf/SPRUHV7

I

TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

The following example specifies a memory range with the R and W attributes and a fill constant of
OFFFFFFFFh:

MEMORY
{
RFILE (RW) : o = 0x0020, I = 0x1000, f = OxFFFF
3
The following example uses the CREGISTER specifier:
MEMORY
{
PRU_MEM_O : org = 0x00000000 len = 0x00002000 CREGISTER=24
PRU_MEM_1 : org = 0x00002000 len = 0x00002000 CREGISTER=25
}-

The use of the CREGISTER specifier in the linker command file allows the cregister type attribute to be
used in C code as follows:

int x _ attribute__((cregister(""PRU_MEM_O0", near), peripheral));
Linker command files normally use the MEMORY directive in conjunction with the SECTIONS directive to

control placement of output sections. For more information about the SECTIONS directive, see
Section 8.5.5.

8.5.4.3 Expressions and Address Operators

Memory range origin and length can use expressions of integer constants with the following operators:
Binary operators: * [0 + - << >> == =
< <=>>= & | && ||
Unary operators: -~

Expressions are evaluated using standard C operator precedence rules.

No checking is done for overflow or underflow, however, expressions are evaluated using a larger integer
type.

Preprocess directive #define constants can be used in place of integer constants. Global symbols cannot
be used in Memory Directive expressions.

Three address operators reference memory range properties from prior memory range entries:

START(MR) Returns start address for previously defined memory range MR.
SIZE(MR) Returns size of previously defined memory range MR.
END(MR) Returns end address for previously defined memory range MR.

Example 8-4. Origin and Length as Expressions

/ /
/* Sample command file with MEMORY directive */
/ /
filel.obj file2.obj /* Input files */
--output_file=prog.out /* Options */

#define ORIGIN 0x00000000
#define BUFFER 0x00000200
#define CACHE 0x0001000

MEMORY

{

FAST_MEM (RX): origin
SLOW_MEM (RW): origin
EXT_MEM (RX): origin

ORIGIN + CACHE length
end(FAST_MEM) length
0x10000000 length

0x00001000 + BUFFER
0Xx00001800 - size(FAST_MEM)
size(FAST_MEM) - CACHE

SPRUHV6C-July 2014—-Revised July 2018 Linker Description 187
Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

8.5.5 The SECTIONS Directive

After you use MEMORY to specify the target system’'s memory model, you can use SECTIONS to allocate
output sections into specific named memory ranges or into memory that has specific attributes. For
example, you could allocate the .text and .data sections into the area named FAST_MEM and allocate the
.bss section into the area named SLOW_MEM.

The SECTIONS directive controls your sections in the following ways:
» Describes how input sections are combined into output sections
» Defines output sections in the executable program

» Allows you to control where output sections are placed in memory in relation to each other and to the
entire memory space (Note that the memory placement order is not simply the sequence in which
sections occur in the SECTIONS directive.)

« Permits renaming of output sections

For more information, see Section 2.5, Section 2.7, and Section 2.4.6. Subsections allow you to
manipulate sections with greater precision.

If you do not specify a SECTIONS directive, the linker uses a default algorithm for combining and
allocating the sections. Section 8.7 describes this algorithm in detail.

188 Linker Description SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

I

TEXAS
INSTRUMENTS

www.ti.com

Linker Command Files

8.5.5.1 SECTIONS Directive Syntax

The SECTIONS directive is specified in a command file by the word SECTIONS (uppercase), followed by
a list of output section specifications enclosed in braces.

The general syntax for the SECTIONS directive is:

SECTIONS

{

}

name : [property [, property] [, property] . . .]
name : [property [, property] [, property] . . .]
name : [property [, property] [, property] . . .]

Each section specification, beginning with name, defines an output section. (An output section is a section

in the output file.) Section names can refer to sections, subsections, or archive library members. (See
Section 8.5.5.4 for information on multi-level subsections.) After the section name is a list of properties
that define the section's contents and how the section is allocated. The properties can be separated by

optional commas. Possible properties for a section are as follows:

Load allocation defines where in memory the section is to be loaded. See Section 3.5,
Section 3.1.1, and Section 8.5.6.

Syntax: load = allocation or
> allocation

Run allocation defines where in memory the section is to be run.
Syntax: run = allocation or
run > allocation

Input sections defines the input sections (object files) that constitute the output section. See

Section 8.5.5.3.
Syntax: { input_sections }

Section type defines flags for special section types. See Section 8.5.8.
Syntax: type = COPY or
type = DSECT or

Fill value defines the value used to fill uninitialized holes. See Section 8.5.11.
Syntax: fill = value

Example 8-5 shows a SECTIONS directive in a sample linker command file.

Example 8-5. The SECTIONS Directive

/* Sample command file with SECTIONS directive */
/ /
filel.obj file2.obj /* Input files */
—--output_Tfile=prog.out /* Options */
SECTIONS
{
-text: load = EXT_MEM, run = 0x00000800
.const: load = FAST_MEM
.bss: load = SLOW_MEM
.data:alpha: align = 16
.data:beta: align = 16
}
SPRUHV6C-July 2014—-Revised July 2018 Linker Description 189

Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

0x00000000

Figure 8-2 shows the output sections defined by the SECTIONS directive in Example 8-5 (.text, .const,
.bss, .data:alpha, and .data:beta) and shows how these sections are allocated in memory using the
MEMORY directive given in Example 8-3.

Figure 8-2. Section Placement Defined by Example 8-5

FAST_MEM
const - Allocated in FAST_MEM The .const section combines the .const sections
from file1.obj and file2.0bj.
0x00001000
SLOW_MEM
bss - Allocated in SLOW_MEM The .bss section combines the .bss sections from
file1.obj and file2.obj.
.data:alpha - Aligned on 16-byte The .data:alpha subsection combines the .data:al-
boundary pha subsections from file1.obj and file2.obj. The
.data:beta subsection combines the .data:beta
Alianed on 16-bvt subsections from file1.obj and file2.obj. The linker
.data:beta) b |gn§ on 1o-byte places the subsections anywhere there is space for
oundary them (in SLOW_MEM in this illustration) and aligns

0x00001800 };/
/ - Empty range of memory
/ as defined in above
0x10000000 =

Ox10001000

each on a 18-byte boundary.

EXT_MEM The .text section combines the .text sections from
text - Mllocated in EXT_MEM file1.obj and file2.obj. The linker combines all sec-
tions named .text into this section. The application
must relocate the section to run at 0x00000800.

/ - Empty range of memory
0xFFEFFFEF A as defined in above

8.5.5.2 Section Allocation and Placement

The linker assigns each output section two locations in target memory: the location where the section will
be loaded and the location where it will be run. Usually, these are the same, and you can think of each
section as having only a single address. The process of locating the output section in the target's memory
and assigning its address(es) is called placement. For more information about using separate load and
run placement, see Section 8.5.6.

If you do not tell the linker how a section is to be allocated, it uses a default algorithm to place the section.
Generally, the linker puts sections wherever they fit into configured memory. You can override this default
placement for a section by defining it within a SECTIONS directive and providing instructions on how to
allocate it.

You control placement by specifying one or more allocation parameters. Each parameter consists of a
keyword, an optional equal sign or greater-than sign, and a value optionally enclosed in parentheses. If
load and run placement are separate, all parameters following the keyword LOAD apply to load
placement, and those following the keyword RUN apply to run placement. The allocation parameters are:

Binding allocates a section at a specific address.
-text: load = 0x1000
Named allocates the section into a range defined in the MEMORY directive with the specified

memory name (like SLOW_MEM) or attributes.
-text: load > SLOW_MEM

190

Linker Description SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

Alignment uses the align or palign keyword to specify the section must start on an address boundary.
-text: align = 0x100

Blocking uses the block keyword to specify the section must fit between two address aligned to the

blocking factor. If a section is too large, it starts on an address boundary.
-text: block(0x100)

For the load (usually the only) allocation, use a greater-than sign and omit the load keyword:
-text: > SLOW_MEM
.text: {...} > SLOW_MEM
-text: > 0x4000
If more than one parameter is used, you can string them together as follows:
.text: > SLOW_MEM align 16

Or if you prefer, use parentheses for readability:
.text: load = (SLOW_MEM align(16))

You can also use an input section specification to identify the sections from input files that are combined
to form an output section. See Section 8.5.5.3.

Additional information about controlling the order in which code and data are placed in memory is provided
in the FAQ topic on section placement.

8.5.5.2.1 Binding

You can set the starting address for an output section by following the section name with an address:
-text: 0x00001000

This example specifies that the .text section must begin at location 0x1000. The binding address must be
a 32-bit constant.

Output sections can be bound anywhere in configured memory (assuming there is enough space), but
they cannot overlap. If there is not enough space to bind a section to a specified address, the linker issues
an error message.

Binding is Incompatible With Alignment and Named Memory

NOTE: You cannot bind a section to an address if you use alignment or named memory. If you try to
do this, the linker issues an error message.

8.5.5.2.2 Named Memory

You can allocate a section into a memory range that is defined by the MEMORY directive (see
Section 8.5.4). This example names ranges and links sections into them:

MEMORY
{
SLOW_MEM (RIX) : origin = 0x00000000, length = 0x00001000
FAST_MEM (RWIX) : origin = 0x03000000, length = 0x00000300
b
SECTIONS
{
-text : > SLOW_MEM
.data : > FAST_MEM ALIGN(128)
-bss : > FAST_MEM
3

In this example, the linker places .text into the area called SLOW_MEM. The .data and .bss output
sections are allocated into FAST_MEM. You can align a section within a named memory range; the .data
section is aligned on a 128-byte boundary within the FAST_MEM range.

SPRUHV6C-July 2014—-Revised July 2018 Linker Description 191

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C
http://processors.wiki.ti.com/index.php/Code_Generation_Tools_FAQ#Q:_How_can_I_get_the_linker_to_place_a_piece_of_code_or_data_so_that_it_comes_before_all_the_rest.3F

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

Similarly, you can link a section into an area of memory that has particular attributes. To do this, specify a
set of attributes (enclosed in parentheses) instead of a memory name. Using the same MEMORY directive
declaration, you can specify:

SECTIONS

{
-text: > (X) /* .text --> executable memory */
.data: > (RI) /* .data --> read or init memory */
.bss : > (RW) /* .bss --> read or write memory */

}

In this example, the .text output section can be linked into either the SLOW_MEM or FAST_MEM area
because both areas have the X attribute. The .data section can also go into either SLOW_MEM or
FAST_MEM because both areas have the R and | attributes. The .bss output section, however, must go
into the FAST_MEM area because only FAST_MEM is declared with the W attribute.

You cannot control where in a named memory range a section is allocated, although the linker uses lower
memory addresses first and avoids fragmentation when possible. In the preceding examples, assuming no
conflicting assignments exist, the .text section starts at address 0. If a section must start on a specific
address, use binding instead of named memory.

8.5.5.2.3 Controlling Placement Using The HIGH Location Specifier

The linker allocates output sections from low to high addresses within a designated memory range by
default. Alternatively, you can cause the linker to allocate a section from high to low addresses within a
memory range by using the HIGH location specifier in the SECTION directive declaration. You might use
the HIGH location specifier in order to keep RTS code separate from application code, so that small
changes in the application do not cause large changes to the memory map.

For example, given this MEMORY directive:

MEMORY
{
RAM : origin = 0x0200, length = 0x0800
FLASH : origin = 0x1100, length = OXEEEO
RESET : origin = OXFFFE, length = 0x0002
}
and an accompanying SECTIONS directive:
SECTIONS
{
-bss : {3 > RAM
.sysmem : {} > RAM
.stack : {3 > RAM (HIGH)
}

The HIGH specifier used on the .stack section placement causes the linker to attempt to allocate .stack
into the higher addresses within the RAM memory range. The .bss and .sysmem sections are allocated
into the lower addresses within RAM. Example 8-6 illustrates a portion of a map file that shows where the
given sections are allocated within RAM for a typical program.

192 Linker Description SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com

Linker Command Files

Example 8-6. Linker Placement With the HIGH Specifier

.bss 0 00000200 00000270
00000200 0000011a
0000031a 00000088
000003a2 00000078
0000041a 00000046
00000460 00000008
00000468 00000004
0000046¢ 00000002
0000046e 00000002

.sysmem 0 00000470 00000120

00000470 00000004
.stack 0 000008c0 00000140
000008c0 00000002

UNINITIALIZED
rtsxxx.lib : defs.obj (.bss)
: trgdrv.obj (.bss)
: lowlev.obj (-bss)
: exit.obj (.bss)
: memory.obj (.bss)
: _lock.obj (-bss)
: fopen.obj (-bss)
hello.obj (.bss)

UNINITIALIZED
rtsxxx .lib : memory.obj (.sysmem)

UNINITIALIZED
rtsxxx .lib : boot.obj (.stack)

As shown in Example 8-6 , the .bss and .sysmem sections are allocated at the lower addresses of RAM
(0x0200 - 0x0590) and the .stack section is allocated at address 0x08c0, even though lower addresses

are available.

Without using the HIGH specifier, the linker allocation would result in the code shown in Example 8-7

The HIGH specifier is ignored if it is used with specific address binding or automatic section splitting (>>

operator).

Example 8-7. Linker Placement Without HIGH Specifier

.bss 0 00000200 00000270
00000200 0000011a
0000031a 00000088
000003a2 00000078
0000041a 00000046
00000460 00000008
00000468 00000004
0000046¢ 00000002
0000046e 00000002

.stack 0 00000470 00000140
00000470 00000002

-sysmem 0 000005b0 00000120

000005b0

8.5.5.2.4 Alignment and Blocki

00000004

ng

UNINITIALIZED
rtsxxx.lib : defs.obj (.bss)
: trgdrv.obj (-bss)
: lowlev.obj (-bss)
: exit.obj (.bss)
: memory.obj (-bss)
: _lock.obj (-bss)
: fopen.obj (-bss)
hello.obj (.bss)

UNINITIALIZED
rtsxxx.lib : boot.obj (.stack)

UNINITIALIZED
rtsxxx.lib : memory.obj (.sysmem)

You can tell the linker to place an output section at an address that falls on an n-byte boundary, where n
is a power of 2, by using the align keyword. For example, the following code allocates .text so that it falls

on a 32-byte boundary:

-text: load = align(32)

Blocking is a weaker form of alignment that allocates a section anywhere within a block of size n. The
specified block size must be a power of 2. For example, the following code allocates .bss so that the entire
section is contained in a single 128-byte or begins on that boundary:

bss: load = block(0x0080)

You can use alignment or blocking alone or in conjunction with a memory area, but alignment and

blocking cannot be used to

gether.

SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback

Linker Description 193

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

8.5.5.2.5 Alignment With Padding

As with align, you can tell the linker to place an output section at an address that falls on an n-byte
boundary, where n is a power of 2, by using the palign keyword. In addition, palign ensures that the size
of the section is a multiple of its placement alignment restrictions, padding the section size up to such a
boundary, as needed.

For example, the following code lines allocate .text on a 2-byte boundary within the PMEM area. The .text
section size is guaranteed to be a multiple of 2 bytes. Both statements are equivalent:

-text: palign(2) {3 > PMEM

-text: palign = 2 {} > PMEM

If the linker adds padding to an initialized output section then the padding space is also initialized. By
default, padding space is filled with a value of O (zero). However, if a fill value is specified for the output
section then any padding for the section is also filled with that fill value. For example, consider the
following section specification:

-.mytext: palign(8), fill = Oxffffffff {3 > PMEM

In this example, the length of the .mytext section is before the palign operator is applied. The contents of
.mytext are as follows:

addr content

0000 0x1234
0002 0x1234
0004 0x1234

After the palign operator is applied, the length of .mytext is 8 bytes, and its contents are as follows:
addr content

0000 0x1234
0002 0x1234
0004 0x1234
0006 OXFFIf

The size of .mytext has been bumped to a multiple of 8 bytes and the padding created by the linker has
been filled with Oxff.

The fill value specified in the linker command file is interpreted as a 16-bit constant. If you specify this
code:

-mytext: palign(8), fill = Oxff {} > PMEM

The fill value assumed by the linker is 0x00ff, and .mytext will then have the following contents:
addr content

0000 0x1234
0002 0x1234
0004 0x1234
0006 OxOO0ff

If the palign operator is applied to an uninitialized section, then the size of the section is bumped to the
appropriate boundary, as needed, but any padding created is not initialized.

The palign operator can also take a parameter of power2. This parameter tells the linker to add padding to
increase the section's size to the next power of two boundary. In addition, the section is aligned on that
power of 2 as well. For example, consider the following section specification:

-.mytext: palign(power2) {} > PMEM

Assume that the size of the .mytext section is 120 bytes and PMEM starts at address 0x10020. After
applying the palign(power2) operator, the .mytext output section will have the following properties:

name addr size align

.mytext 0x00010080 0x80 128

194

Linker Description SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

8.5.5.3 Specifying Input Sections

An input section specification identifies the sections from input files that are combined to form an output
section. In general, the linker combines input sections by concatenating them in the order in which they
are specified. However, if alignment or blocking is specified for an input section, all of the input sections
within the output section are ordered as follows:

» All aligned sections, from largest to smallest
» All blocked sections, from largest to smallest
» All other sections, from largest to smallest

The size of an output section is the sum of the sizes of the input sections that it comprises.
Example 8-8 shows the most common type of section specification; note that no input sections are listed.

Example 8-8. The Most Common Method of Specifying Section Contents

SECTIONS
{
.text:
.data:
-bss:
}

In Example 8-8, the linker takes all the .text sections from the input files and combines them into the .text
output section. The linker concatenates the .text input sections in the order that it encounters them in the
input files. The linker performs similar operations with the .data and .bss sections. You can use this type of
specification for any output section.

You can explicitly specify the input sections that form an output section. Each input section is identified by
its filename and section name. If the filename is hyphenated (or contains special characters), enclose it
within quotes:

SECTIONS
{
-text : /* Build .text output section */
{
fl.obj(.text) /* Link .text section from fl.obj */
f2_obj(secl) /* Link secl section from f2.obj */
"“f3-new.obj" /* Link ALL sections from f3-new.obj */
f4.obj(.text,sec2) /* Link .text and sec2 from f4.obj */

f5.0bj (-task??) /* Link _task00, .task01, .taskXX, etc. from f5.obj */
T6.0obj(*_ctable) /* Link sections ending in *"_ctable”™ from f6.o0bj */
X*.obj (. text) /* Link .text section for all files starting with */
/* "X" and ending in "_.obj" */
}
}

It is not necessary for input sections to have the same name as each other or as the output section they
become part of. If a file is listed with no sections,all of its sections are included in the output section. If any
additional input sections have the same name as an output section but are not explicitly specified by the
SECTIONS directive, they are automatically linked in at the end of the output section. For example, if the
linker found more .text sections in the preceding example and these .text sections were not specified
anywhere in the SECTIONS directive, the linker would concatenate these extra sections after f4.o0bj(sec2).

The specifications in Example 8-8 are actually a shorthand method for the following:

SECTIONS

{
text: { *(.text) }
.data: { *(.data) }
.bss: { *(.bss) }

}

SPRUHV6C-July 2014—-Revised July 2018 Linker Description 195

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

The specification *(.text) means the unallocated .text sections from all input files. This format is useful if:

* You want the output section to contain all input sections that have a specified nhame, but the output
section name is different from the input sections' name.

* You want the linker to allocate the input sections before it processes additional input sections or
commands within the braces.

The following example illustrates the two purposes above:

SECTIONS
{
text @ {
abc.obj(xqt)
*(.text)
b
.data : {
*(.data)
fil.obj(table)
3
3

In this example, the .text output section contains a named section xqt from file abc.obj, which is followed
by all the .text input sections. The .data section contains all the .data input sections, followed by a named
section table from the file fil.obj. This method includes all the unallocated sections. For example, if one of
the .text input sections was already included in another output section when the linker encountered
*(.text), the linker could not include that first .text input section in the second output section.

Each input section acts as a prefix and gathers longer-named sections. For example, the pattern *(.data)
matches .dataspecial. This mechanism enables the use of subsections, which are described in the
following section.

8.5.5.4 Using Multi-Level Subsections

Subsections can be identified with the base section name and one or more subsection names separated
by colons. For example, A:B and A:B:C name subsections of the base section A. In certain places in a
linker command file specifying a base name, such as A, selects the section A as well as any subsections
of A, such as A:B or A:C:D.

A name such as A:B can specify a (sub)section of that name as well as any (multi-level) subsections
beginning with that name, such as A:B:C, A:B:OTHER, etc. All subsections of A:B are also subsections of
A. A and A:B are supersections of A:B:C. Among a group of supersections of a subsection, the nearest
supersection is the supersection with the longest name. Thus, among {A, A:B} the nearest supersection of
A:B:C:D is A:B. With multiple levels of subsections, the constraints are the following:

1. When specifying input sections within a file (or library unit) the section name selects an input section
of the same name and any subsections of that name.

2. Input sections that are not explicitly allocated are allocated in an existing output section of the same
name or in the nearest existing supersection of such an output section. An exception to this rule is that
during a partial link (specified by the --relocatable linker option) a subsection is allocated only to an
existing output section of the same name.

3. If no such output section described in 2) is defined, the input section is put in a newly created output
section with the same name as the base name of the input section

Consider linking input sections with the following names:

europe:north:norway europe:central:france europe:south:spain
europe:north:sweden europe:central:germany europe:south:italy
europe:north:finland europe:central:denmark europe:south:malta

europe:north:iceland

196 Linker Description SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

This SECTIONS specification allocates the input sections as indicated in the comments:

SECTIONS {
nordic: {*(europe:north)
(europe:central :denmark)} / the nordic countries */

central: {*(europe:central)} /* france, germany */
therest: {*(europe)} /* spain, italy, malta */
¥
This SECTIONS specification allocates the input sections as indicated in the comments:
SECTIONS {
islands: {*(europe:south:malta)
(europe:north:iceland)} / malta, iceland */
europe:north:finland : {} /* finland */
europe:north {3 /* norway, sweden */
europe:central {3 /* germany, denmark */
europe:central:france: {} /* france */
/* (italy, spain) go into a linker-generated output section 'europe" */
3

Upward Compatibility of Multi-Level Subsections

NOTE: Existing linker commands that use the existing single-level subsection features and which do
not contain section hames containing multiple colon characters continue to behave as
before. However, if section names in a linker command file or in the input sections supplied
to the linker contain multiple colon characters, some change in behavior could be possible.
You should carefully consider the impact of the rules for multiple levels to see if it affects a
particular system link.

8.5.5.5 Specifying Library or Archive Members as Input to Output Sections

You can specify one or more members of an object library or archive for input to an output section.
Consider this SECTIONS directive:

Example 8-9. Archive Members to Output Sections

SECTIONS
{
boot > BOOT1
{
-1 rtsxX._.lib<boot.obj> (.text)
-1 rtsxXX._.lib<exit.obj strcpy.obj> (.text)
}
.rts > BOOT2
{
-1 rtsxXX_lib (.text)
}
.text > RAM
{
* (.text)
}
}

In Example 8-9, the .text sections of boot.obj, exit.obj, and strcpy.obj are extracted from the run-time-
support library and placed in the .boot output section. The remainder of the run-time-support library object
that is referenced is allocated to the .rts output section. Finally, the remainder of all other .text sections are
to be placed in section .text.

SPRUHV6C-July 2014—-Revised July 2018 Linker Description 197

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

An archive member or a list of members is specified by surrounding the member name(s) with angle
brackets < and > after the library name. Any object files separated by commas or spaces from the
specified archive file are legal within the angle brackets.

The --library option (which normally implies a library path search be made for the named file following the
option) listed before each library in Example 8-9 is optional when listing specific archive members inside <
>. Using < > implies that you are referring to a library.

To collect a set of the input sections from a library in one place, use the --library option within the
SECTIONS directive. For example, the following collects all the .text sections from rtspruv3_le.lib into the
.rtstest section:

SECTIONS

{

}

.rtstest { -1 rtspruv3_le._lib(.text) } > RAM

SECTIONS Directive Effect on --priority

NOTE: Specifying a library in a SECTIONS directive causes that library to be entered in the list of
libraries that the linker searches to resolve references. If you use the --priority option, the first
library specified in the command file will be searched first.

8.5.5.6 Allocation Using Multiple Memory Ranges

The linker allows you to specify an explicit list of memory ranges into which an output section can be
allocated. Consider the following example:

MEMORY

{
P_MEM1 : origin = 0x02000, UlIength = 0x01000
P_MEM2 : origin = 0x04000, length = 0x01000
P_MEM3 : origin = 0x06000, length = 0x01000
P_MEM4 : origin = 0x08000, length = 0x01000

}

SECTIONS

{
.text : { } > P_MEM1 | P_MEM2 | P_MEM4

}

The | operator is used to specify the multiple memory ranges. The .text output section is allocated as a
whole into the first memory range in which it fits. The memory ranges are accessed in the order specified.
In this example, the linker first tries to allocate the section in P_MEML1. If that attempt fails, the linker tries
to place the section into P_MEM2, and so on. If the output section is not successfully allocated in any of
the named memory ranges, the linker issues an error message.

With this type of SECTIONS directive specification, the linker can seamlessly handle an output section
that grows beyond the available space of the memory range in which it is originally allocated. Instead of
modifying the linker command file, you can let the linker move the section into one of the other areas.

198 Linker Description SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

8.5.5.7 Automatic Splitting of Output Sections Among Non-Contiguous Memory Ranges

The linker can split output sections among multiple memory ranges for efficient allocation. Use the >>
operator to indicate that an output section can be split, if necessary, into the specified memory ranges:

MEMORY
{
P_MEM1 : origin = 0x2000, length = 0x1000
P_MEM2 : origin = 0x4000, length = 0x1000
P_MEM3 : origin = 0x6000, length = 0x1000
P_MEM4 : origin = 0x8000, length = 0x1000
}
SECTIONS
{
.text: { *(.text) } >> P_MEM1 | P_MEM2 | P_MEM3 | P_MEM4
}

In this example, the >> operator indicates that the .text output section can be split among any of the listed
memory areas. If the .text section grows beyond the available memory in P_MEM1, it is split on an input
section boundary, and the remainder of the output section is allocated to P_MEM2 | P_MEMS3 | P_MEMA4.

The | operator is used to specify the list of multiple memory ranges.

You can also use the >> operator to indicate that an output section can be split within a single memory
range. This functionality is useful when several output sections must be allocated into the same memory
range, but the restrictions of one output section cause the memory range to be partitioned. Consider the
following example:

MEMORY
{
RAM : origin = 0x1000, length = 0x8000
}
SECTIONS
{
.special: { fl.obj(-text) } load = 0x4000
-text: { *(.text) } >> RAM
}

The .special output section is allocated near the middle of the RAM memory range. This leaves two
unused areas in RAM: from 0x1000 to 0x4000, and from the end of f1.obj(.text) to 0x8000. The
specification for the .text section allows the linker to split the .text section around the .special section and
use the available space in RAM on either side of .special.

The >> operator can also be used to split an output section among all memory ranges that match a
specified attribute combination. For example:

MEMORY
{
P_MEM1 (RWX) : origin = 0x1000, length = 0x2000
P_MEM2 (RWI) : origin = 0x4000, length = 0x1000
}
SECTIONS
{
-text: { *(.text) } > (RW)
}
SPRUHV6C-July 2014—-Revised July 2018 Linker Description 199

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

8.5.6

The linker attempts to allocate all or part of the output section into any memory range whose attributes
match the attributes specified in the SECTIONS directive.

This SECTIONS directive has the same effect as:

SECTIONS

{

text: { *(.text) } >> P_MEM1 | P_MEM2}
}

Certain sections should not be split:

» Certain sections created by the compiler, including
— The .cinit section, which contains the autoinitialization table for C/C++ programs
— The .pinit section, which contains the list of global constructors for C++ programs

* An output section with an input section specification that includes an expression to be evaluated. The
expression may define a symbol that is used in the program to manage the output section at run time.

* An output section that has a START(), END(), OR SIZE() operator applied to it. These operators
provide information about a section's load or run address, and size. Splitting the section may
compromise the integrity of the operation.

* The run allocation of a UNION. (Splitting the load allocation of a UNION is allowed.)
If you use the >> operator on any of these sections, the linker issues a warning and ignores the operator.

Placing a Section at Different Load and Run Addresses

At times, you may want to load code into one area of memory and run it in another. For example, you may
have performance-critical code in slow external memory. The code must be loaded into slow external
memory, but it would run faster in fast external memory.

The linker provides a simple way to accomplish this. You can use the SECTIONS directive to direct the
linker to allocate a section twice: once to set its load address and again to set its run address. For
example:

.Fir: load = SLOW_MEM, run = FAST_MEM
Use the load keyword for the load address and the run keyword for the run address.
See Section 3.5 for an overview on run-time relocation.

The application must copy the section from its load address to its run address; this does not happen
automatically when you specify a separate run address. (The TABLE operator instructs the linker to
produce a copy table; see Section 8.8.4.1.)

200

Linker Description SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

8.5.6.1 Specifying Load and Run Addresses

The load address determines where a loader places the raw data for the section. Any references to the
section (such as labels in it) refer to its run address. See Section 3.1.1 for an overview of load and run
addresses.

If you provide only one allocation (either load or run) for a section, the section is allocated only once and
loads and runs at the same address. If you provide both allocations, the section is allocated as if it were
two sections of the same size. This means that both allocations occupy space in the memory map and
cannot overlay each other or other sections. (The UNION directive provides a way to overlay sections; see
Section 8.5.7.2.)

If either the load or run address has additional parameters, such as alignment or blocking, list them after
the appropriate keyword. Everything related to allocation after the keyword load affects the load address
until the keyword run is seen, after which, everything affects the run address. The load and run allocations
are completely independent, so any qualification of one (such as alignment) has no effect on the other.
You can also specify run first, then load. Use parentheses to improve readability.

The examples that follow specify load and run addresses.

In this example, align applies only to load:
.data: load = SLOW_MEM, align = 32, run = FAST_MEM

The following example uses parentheses, but has effects that are identical to the previous example:
.data: load = (SLOW_MEM align 32), run = FAST_MEM

The following example aligns FAST_MEM to 32 bits for run allocations and aligns all load allocations to 16
bits:
.data: run = FAST_MEM, align 32, load = align 16

For more information on run-time relocation see Section 3.5.

Uninitialized sections (such as .bss) are not loaded, so their only significant address is the run address.
The linker allocates uninitialized sections only once: if you specify both run and load addresses, the linker
warns you and ignores the load address. Otherwise, if you specify only one address, the linker treats it as
a run address, regardless of whether you call it load or run.

This example specifies load and run addresses for an uninitialized section:
-bss: load = 0x1000, run = FAST_MEM

A warning is issued, load is ignored, and space is allocated in FAST_MEM. All of the following examples
have the same effect. The .bss section is allocated in FAST_MEM.

.dbss: load = FAST_MEM

-bss: run = FAST_MEM

.bss: > FAST_MEM

SPRUHV6C-July 2014—-Revised July 2018 Linker Description 201

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

8.5.7 Using GROUP and UNION Statements

Two SECTIONS statements allow you to organize or conserve memory: GROUP and UNION. Grouping
sections causes the linker to allocate them contiguously in memory. Unioning sections causes the linker to
allocate them to the same run address.

8.5.7.1 Grouping Output Sections Together

The SECTIONS directive's GROUP option forces several output sections to be allocated contiguously and
in the order listed, unless the UNORDERED operator is used. For example, assume that a section named
term_rec contains a termination record for a table in the .data section. You can force the linker to allocate
.data and term_rec together:

Example 8-10. Allocate Sections Together

SECTIONS
{
-text /* Normal output section */
-bss /* Normal output section */
GROUP 0x00001000 : /* Specify a group of sections */
{
.data /* First section in the group */
term_rec /* Allocated immediately after .data */
3
¥

You can use binding, alignment, or named memory to allocate a GROUP in the same manner as a single
output section. In the preceding example, the GROUP is bound to address 0x1000. This means that .data
is allocated at 0x1000, and term_rec follows it in memory.

You Cannot Specify Addresses for Sections Within a GROUP

NOTE: When you use the GROUP option, binding, alignment, or allocation into named memory can
be specified for the group only. You cannot use binding, named memory, or alignment for
sections within a group.

8.5.7.2 Overlaying Sections With the UNION Statement

For some applications, you may want to allocate more than one section that occupies the same address
during run time. For example, you may have several routines you want in fast external memory at different
stages of execution. Or you may want several data objects that are not active at the same time to share a
block of memory. The UNION statement within the SECTIONS directive provides a way to allocate several
sections at the same run-time address.

In Example 8-11, the .bss sections from filel.obj and file2.0obj are allocated at the same address in
FAST_MEM. In the memory map, the union occupies as much space as its largest component. The
components of a union remain independent sections; they are simply allocated together as a unit.

Example 8-11. The UNION Statement

SECTIONS

{
.text: load = SLOW_MEM
UNION: run = FAST_MEM
{

.bss:partl: { filel.obj(.bss) }
-bss:part2: { file2.obj(.bss) }

T
.bss:part3: run = FAST_MEM { globals.obj(.bss) }

202 Linker Description SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

Allocation of a section as part of a union affects only its run address. Under no circumstances can
sections be overlaid for loading. If an initialized section is a union member (an initialized section, such as
.text, has raw data), its load allocation must be separately specified. See Example 8-12. (There is an
exception to this rule when combining an initialized section with uninitialized sections; see

Section 8.5.7.3.)

Example 8-12. Separate Load Addresses for UNION Sections

UNION run = FAST_MEM
{
.text:partl: load
.text:part2: load

SLOW_MEM, { filel.obj(.text) }
SLOW_MEM, { file2.obj(.text) }

}

Figure 8-3. Memory Allocation Shown in Example 8-11 and Example 8-12

FAST_MEM Sections can run FAST_MEM
as a union. This Copi t
bss:part2 |/7 is run-time alloca- text 2 (run) |'\ ru?]pt'iis]ea
bss:part1 tion only. text 1 (run)
%
.bss:part3 .bss:part3
SLOW_MEM SLOW_MEM
text . text 1 (load)
Sections cannot
load as a union t\
.text 2 (load)

Since the .text sections contain raw data, they cannot load as a union, although they can be run as a
union. Therefore, each requires its own load address. If you fail to provide a load allocation for an

initialized section within a UNION, the linker issues a warning and allocates load space anywhere it can in
configured memory.

Uninitialized sections are not loaded and do not require load addresses.

The UNION statement applies only to allocation of run addresses, so it is meaningless to specify a load
address for the union itself. For purposes of allocation, the union is treated as an uninitialized section: any
one allocation specified is considered a run address, and if both run and load addresses are specified, the
linker issues a warning and ignores the load address.

SPRUHV6C-July 2014—-Revised July 2018 Linker Description 203
Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

8.5.7.3 Using Memory for Multiple Purposes

One way to reduce an application's memory requirement is to use the same range of memory for multiple
purposes. You can first use a range of memory for system initialization and startup. Once that phase is
complete, the same memory can be repurposed as a collection of uninitialized data variables or a heap.
To implement this scheme, use the following variation of the UNION statement to allow one section to be
initialized and the remaining sections to be uninitialized.

Generally, an initialized section (one with raw data, such as .text) in a union must have its load allocation
specified separately. However, one and only one initialized section in a union can be allocated at the
union's run address. By listing it in the UNION statement with no load allocation at all, it will use the
union's run address as its own load address.

For example:

UNION run = FAST_MEM
{ .cinit .bss }

In this example, the .cinit section is an initialized section. It will be loaded into FAST_MEM at the run
address of the union. In contrast, .bss is an uninitialized section. Its run address will also be that of the
union.

8.5.7.4 Nesting UNIONs and GROUPs

The linker allows arbitrary nesting of GROUP and UNION statements with the SECTIONS directive. By
nesting GROUP and UNION statements, you can express hierarchical overlays and groupings of sections.
Example 8-13 shows how two overlays can be grouped together.

Example 8-13. Nesting GROUP and UNION Statements

SECTIONS

GROUP 0x1000 : run = FAST_MEM

{
UNION:
{
mysectl: load = SLOW_MEM
mysect2: load = SLOW_MEM
}
UNION:
{
mysect3: load = SLOW_MEM
mysect4: load = SLOW_MEM
3
}
b
For this example, the linker performs the following allocations:
e The four sections (mysectl, mysect2, mysect3, mysect4) are assigned unique, non-overlapping load
addresses. This assignment is determined by the particular load allocations given for each section.
» Sections mysectl and mysect2 are assigned the same run address in FAST_MEM.
» Sections mysect3 and mysect4 are assigned the same run address in FAST_MEM.
» The run addresses of mysectl/mysect2 and mysect3/mysect4 are allocated contiguously, as directed
by the GROUP statement (subject to alignment and blocking restrictions).
To refer to groups and unions, linker diagnostic messages use the notation:
GROUP_n UNION_n
where n is a sequential number (beginning at 1) that represents the lexical ordering of the group or union
in the linker control file without regard to nesting. Groups and unions each have their own counter.
204 Linker Description SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

8.5.7.5 Checking the Consistency of Allocators

The linker checks the consistency of load and run allocations specified for unions, groups, and sections.
The following rules are used:

* Run allocations are only allowed for top-level sections, groups, or unions (sections, groups, or unions
that are not nested under any other groups or unions). The linker uses the run address of the top-level
structure to compute the run addresses of the components within groups and unions.

» The linker does not accept a load allocation for UNIONSs.
* The linker does not accept a load allocation for uninitialized sections.

* In most cases, you must provide a load allocation for an initialized section. However, the linker does
not accept a load allocation for an initialized section that is located within a group that already defines
a load allocator.

» As a shortcut, you can specify a load allocation for an entire group, to determine the load allocations
for every initialized section or subgroup nested within the group. However, a load allocation is
accepted for an entire group only if all of the following conditions are true:

— The group is initialized (that is, it has at least one initialized member).
— The group is not nested inside another group that has a load allocator.
— The group does not contain a union containing initialized sections.

» If the group contains a union with initialized sections, it is necessary to specify the load allocation for
each initialized section nested within the group. Consider the following example:

SECTIONS

{
GROUP: load = SLOW_MEM, run = SLOW_MEM

{
-textl:

UNION:

{
-text2:

-text3:

}
}
}

The load allocator given for the group does not uniquely specify the load allocation for the elements
within the union: .text2 and .text3. In this case, the linker issues a diagnostic message to request that
these load allocations be specified explicitly.

8.5.7.6 Naming UNIONs and GROUPs
You can give a hame to a UNION or GROUP by entering the name in parentheses after the declaration.

For example:
GROUP(BSS_SYSMEM_STACK_GROUP)
{
-bss {3
.sysmem :{}
.stack :{}

} load=D_MEM, run=D_MEM

The name you defined is used in diagnostics for easy identification of the problem LCF area. For example:
warning: LOAD placement ignored for '"BSS_SYSMEM_STACK_GROUP'": object is uninitialized

UNIONCTEXT_CINIT_UNION)

{
.const :{}load=D_MEM, table(tablel)
-pinit :{}load=D_MEM, table(tablel)
}run=P_MEM

warning:table(tablel) operator ignored: table(tablel) has already been applied to a section
in the "UNION(TEXT_CINIT_UNION)" in which ".pinit" is a descendant

SPRUHV6C-July 2014—-Revised July 2018 Linker Description 205

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

8.5.8 Special Section Types (DSECT, COPY, NOLOAD, and NOINIT)

8.5.9

You can assign the following special types to output sections: DSECT, COPY, NOLOAD, and NOINIT.
These types affect the way that the program is treated when it is linked and loaded. You can assign a type
to a section by placing the type after the section definition. For example:
SECTIONS

{

secl: load
sec2: load

0x00002000, type
0x00004000, type

DSECT {fl.obj}
COPY {f2.0bj}

sec3: load = 0x00006000, type NOLOAD {f3.obj}
sec4: load 0x00008000, type NOINIT {f4.obj}
}

» The DSECT type creates a dummy section with the following characteristics:

— Itis not included in the output section memory allocation. It takes up no memory and is not included
in the memory map listing.

— It can overlay other output sections, other DSECTSs, and unconfigured memory.

— Global symbols defined in a dummy section are relocated normally. They appear in the output
module's symbol table with the same value they would have if the DSECT had actually been
loaded. These symbols can be referenced by other input sections.

— Undefined external symbols found in a DSECT cause specified archive libraries to be searched.

— The section's contents, relocation information, and line number information are not placed in the
output module.

In the preceding example, none of the sections from f1.obj are allocated, but all the symbols are
relocated as though the sections were linked at address 0x2000. The other sections can refer to any of
the global symbols in secl.

» A COPY section is similar to a DSECT section, except that its contents and associated information are
written to the output module. The .cinit section that contains initialization tables for the PRU C/C++
compiler has this attribute under the run-time initialization model.

» A NOLOAD section differs from a normal output section in one respect: the section's contents,
relocation information, and line number information are not placed in the output module. The linker
allocates space for the section, and it appears in the memory map listing.

* A NOINIT section is not C auto-initialized by the linker. It is your responsibility to initialize this section
as needed.

Configuring Error Correcting Code (ECC) with the Linker

Error Correcting Codes (ECC) can be generated and placed in separate sections through the linker
command file. ECC uses extra bits to allow errors to be detected and/or corrected by a device. To enable
ECC generation, you must include --ecc=on as a linker option on the command line. By default ECC
generation is off, even if the ECC directive and ECC specifiers are used in the linker command file. This
allows you to fully configure ECC in the linker command file while still being able to quickly turn the code
generation on and off via the command line.

The ECC support provided by the linker is compatible with the ECC support in Tl Flash memory on
various Tl devices. Tl Flash memory uses a modified Hamming(72,64) code, which uses 8 parity bits for
every 64 bits. Check the documentation for your Flash memory to see if ECC is supported. (ECC for read-
write memory is handled completely in hardware at run time.)

You can control the details of ECC generation using the ECC specifier in the memory map
(Section 8.5.9.1) and the ECC directive (Section 8.5.9.2).

See Section 8.4.11 for command-line options that introduce bit errors into code that has a corresponding
ECC section or into the ECC parity bits themselves. Use these options to test ECC error handling code.

ECC can be generated during linking. The ECC data is included in the resulting object file, alongside code
and data, as a data section located at the appropriate address. No extra ECC generation step is required
after compilation, and the ECC can be uploaded to the device along with everything else.

206

Linker Description SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

8.5.9.1 Using the ECC Specifier in the Memory Map

To generate ECC, add a separate memory range to your memory map to hold ECC data and to indicate
which memory range contains the Flash data that corresponds to this ECC data. If you have multiple
memory ranges for Flash data, you should add a separate ECC memory range for each Flash data range.

The definition of an ECC memory range can also provide parameters for how to generate the ECC data.
The memory map for a device supporting Flash ECC may look something like this:

MEMORY {
VECTORS : origin=0x00000000 Iength=0x000020
FLASHO : origin=0x00000020 length=0x17FFEO
FLASH1 : origin=0x00180000 length=0x180000
STACKS : origin=0x08000000 Iength=0x000500
RAM : origin=0x08000500 length=0x03FB0OO

ECC_VEC : origin=0xf0400000 length=0x000004 ECC={ input_range=VECTORS }
ECC_FLAO : origin=0xf0400004 length=0x02FFFC ECC={ input_range=FLASHO }
ECC_FLA1 : origin=0xf0430000 length=0x030000 ECC={ input_range=FLASH1 }

}
The specification syntax for ECC memory ranges is as follows:
MEMORY {
<memory specifierl> : <memory attributes> [vFfill=<fill value>]
<memory specifier2> : <memory attributes> ECC = {
input_range = <memory specifierl>
[algorithm = <algorithm name>]
[fill = [true, false] 1]
}
}

The "ECC" specifier attached to the ECC memory ranges indicates the data memory range that the ECC
range covers. The ECC specifier supports the following parameters:

input_range = <range> The data memory range covered by this ECC data range. Required.

algorithm = <ECC alg name> The name of an ECC algorithm defined later in the command file using
the ECC directive. Optional if only one algorithm is defined. (See
Section 8.5.9.2.)

fill = true | false Whether to generate ECC data for holes in the initialized data of the input
range. The default is "true". Using fill=false produces behavior similar to
the nowECC tool. The input range can be filled normally or using a virtual
fill (see Section 8.5.9.3).

SPRUHV6C-July 2014—-Revised July 2018 Linker Description 207

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

8.5.9.2 Using the ECC Directive

In addition to specifying ECC memory ranges in the memory map, the linker command file must specify
parameters for the algorithm that generates ECC data. You might need multiple ECC algorithm
specifications if you have multiple Flash devices.

Each TI device supporting Flash ECC has exactly one set of valid values for these parameters. The linker
command files provided with Code Composer Studio include the ECC parameters necessary for ECC
support on the Flash memory accessible by the device. Documentation is provided here for completeness.

You specify algorithm parameters with the top-level ECC directive in the linker command file. The
specification syntax is as follows:

ECC {
<algorithm name> : parity_mask = <8-bit integer>
mirroring = [FO21, FO35]
address_mask = <32-bit mask>
b
For example:
MEMORY {

FLASHO : origin=0x00000020 length=0x17FFEO
ECC_FLAO : origin=0xf0400004 length=0x02FFFC ECC={ input_range=FLASHO algorithm=F021 }

}

ECC { FO21 : parity_mask = Oxfc
mirroring = F021 }

This ECC directive accepts the following attributes:

algorithm_name Specify the name you would like to use for referencing the algorithm.
address_mask = <32-bit This mask determines which bits of the address of each 64-bit piece of
mask> memory are used in the calculation of the ECC byte for that memory.

Default is Oxffffffff, so that all bits of the address are used. (Note that the
ECC algorithm itself ignores the lowest bits, which are always zero for a
correctly-aligned input block.)

parity_mask = <8-bit mask> This mask determines which ECC bits encode even parity and which bits
encode odd parity. Default is 0, meaning that all bits encode even parity.

mirroring = F021 | FO35 This setting determines the order of the ECC bytes and their duplication
pattern for redundancy. Default is FO21.

8.5.9.3 Using the VFILL Specifier in the Memory Map

Normally, specifying a fill value for a MEMORY range creates initialized data sections to cover any
previously uninitialized areas of memory. To generate ECC data for an entire memory range, the linker
either needs to have initialized data in the entire range, or needs to know what value uninitialized memory
areas will have at run time.

In cases where you want to generate ECC for an entire memory range, but do not want to initialize the
entire range by specifying a fill value, you can use the "Vfill" specifier instead of a "fill" specifier to virtually
fill the range:
MEMORY {

FLASH : origin=0x0000 length=0x4000 vTfill=0xffffffff
}

The Vfill specifier is functionally equivalent to omitting a fill specifier, except that it allows ECC data to be
generated for areas of the input memory range that remain uninitialized. This has the benefit of reducing
the size of the resulting object file.

The Vfill specifier has no effect other than in ECC data generation. It cannot be specified along with a fill
specifier, since that would introduce ambiguity.

If fill is specified in the ECC specifier, but Vfill is not specified, Vfill defaults to 0xff.

208

Linker Description SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

I

TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

8.5.10 Assigning Symbols at Link Time

Linker assignment statements allow you to define external (global) symbols and assign values to them at
link time. You can use this feature to initialize a variable or pointer to an allocation-dependent value. See
Section 8.6.1 for information about referring to linker symbols in C/C++ code.

8.5.10.1 Syntax of Assignment Statements

The syntax of assignment statements in the linker is similar to that of assignment statements in the C
language:

symbol = expression; assigns the value of expression to symbol
symbol + = expression; adds the value of expression to symbol
symbol -= expression; subtracts the value of expression from symbol
symbol * = expression; multiplies symbol by expression

symbol /= expression; divides symbol by expression

The symbol should be defined externally. If it is not, the linker defines a new symbol and enters it into the
symbol table. The expression must follow the rules defined in Section 8.5.10.3. Assignment statements
must terminate with a semicolon.

The linker processes assignment statements after it allocates all the output sections. Therefore, if an
expression contains a symbol, the address used for that symbol reflects the symbol's address in the
executable output file.

For example, suppose a program reads data from one of two tables identified by two external symbols,
Tablel and Table2. The program uses the symbol cur_tab as the address of the current table. The
cur_tab symbol must point to either Tablel or Table2. You could accomplish this in the assembly code,
but you would need to reassemble the program to change tables. Instead, you can use a linker
assignment statement to assign cur_tab at link time:

prog.obj /* Input file */

cur_tab = Tablel; /* Assign cur_tab to one of the tables */

8.5.10.2 Assigning the SPC to a Symbol

A special symbol, denoted by a dot (.), represents the current value of the section program counter (SPC)
during allocation. The SPC keeps track of the current location within a section. The linker's . symbol is
analogous to the assembler's $ symbol. The . symbol can be used only in assignment statements within a
SECTIONS directive because . is meaningful only during allocation and SECTIONS controls the allocation
process. (See Section 8.5.5.)

The . symbol refers to the current run address, not the current load address, of the section.

For example, suppose a program needs to know the address of the beginning of the .data section. By
using the .global directive (see Identify Global Symbols), you can create an external undefined variable
called Dstart in the program. Then, assign the value of . to Dstart:

SECTIONS

{
-text: s
.data: {Dstart = _;}
-bss : s

¥

This defines Dstart to be the first linked address of the .data section. (Dstart is assigned before .data is
allocated.) The linker relocates all references to Dstart.

A special type of assignment assigns a value to the . symbol. This adjusts the SPC within an output
section and creates a hole between two input sections. Any value assigned to . to create a hole is relative
to the beginning of the section, not to the address actually represented by the . symbol. Holes and
assignments to . are described in Section 8.5.11.

SPRUHV6C-July 2014—-Revised July 2018 Linker Description 209
Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

8.5.10.3 Assignment Expressions

These rules apply to linker expressions:
» Expressions can contain global symbols, constants, and the C language operators listed in Table 8-11.
» All numbers are treated as long (32-hit) integers.

» Constants are identified by the linker in the same way as by the assembler. That is, numbers are
recognized as decimal unless they have a suffix (H or h for hexadecimal and Q or q for octal). C
language prefixes are also recognized (0 for octal and Ox for hex). Hexadecimal constants must begin
with a digit. No binary constants are allowed.

* Symbols within an expression have only the value of the symbol's address. No type-checking is
performed.

» Linker expressions can be absolute or relocatable. If an expression contains any relocatable symbols
(and 0 or more constants or absolute symbols), it is relocatable. Otherwise, the expression is absolute.
If a symbol is assigned the value of a relocatable expression, it is relocatable; if it is assigned the value
of an absolute expression, it is absolute.

The linker supports the C language operators listed in Table 8-11 in order of precedence. Operators in the
same group have the same precedence. Besides the operators listed in Table 8-11, the linker also has an
align operator that allows a symbol to be aligned on an n-byte boundary within an output section (n is a
power of 2). For example, the following expression aligns the SPC within the current section on the next
16-byte boundary. Because the align operator is a function of the current SPC, it can be used only in the
same context as . —that is, within a SECTIONS directive.

. = align(16);

Table 8-11. Groups of Operators Used in Expressions (Precedence)

Group 1 (Highest Precedence) Group 6
! Logical NOT
~ Bitwise NOT & Bitwise AND
- Negation
Group 2 Group 7
* Multiplication
/ Division Bitwise OR
% Modulus
Group 3 Group 8
+ Addition ’
- Subtraction && Logical AND
Group 4 Group 9
>> Arithmetic right shift .
<< Arithmetic left shift I Logical OR
Group 5 Group 10 (Lowest Precedence)
== Equal to _ .
= Not equal to T ASS|gn_ment .) _
S Greater than += A+=B is equ!valent to A=A+B
-= A-=B is equivalentto A=A-B
< Less than * = * — ; ; — A%
<= Less than or equal to _ A _ B 1S equ!va:ent o A - A"B
5= Greater than or equal to /= A/=B is equivalentto A=A/B
8.5.10.4 Symbols Automatically Defined by the Linker
The linker automatically defines the following symbols for C/C++ support when the --ram_model or --
rom_model option is used.
__TI_ STACK_END is assigned the end of the .stack size.
__TI_STACK_SIZE is assigned the size of the .stack section for.
__TI_SYSMEM_SIZE is assigned the size of the .sysmem section.
210 Linker Description SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

These linker-defined symbols can be accessed in any assembly language module if they are declared with
a .global directive (see Identify Global Symbols).

See Section 8.6.1 for information about referring to linker symbols in C/C++ code.

8.5.10.5 Why the Dot Operator Does Not Always Work

The dot operator (.) is used to define symbols at link-time with a particular address inside of an output
section. It is interpreted like a PC. Whatever the current offset within the current section is, that is the
value associated with the dot. Consider an output section specification within a SECTIONS directive:

outsect:

{
sl.obj(-text)
end_of_sl1 = .3
start_of_s2 = _;
s2.obj(-text)
end_of s2 = _;

}

This statement creates three symbols:

» end_of_sl—the end address of .text in s1.0bj
» start_of_s2—the start address of .text in s2.0bj
e end_of s2—the end address of .text in s2.0bj

Suppose there is padding between s1.0bj and s2.o0bj created as a result of alignment. Then start_of_s2 is
not really the start address of the .text section in s2.0bj, but it is the address before the padding needed to
align the .text section in s2.obj. This is due to the linker's interpretation of the dot operator as the current
PC. It is also true because the dot operator is evaluated independently of the input sections around it.

Another potential problem in the above example is that end_of s2 may not account for any padding that
was required at the end of the output section. You cannot reliably use end_of_s2 as the end address of
the output section. One way to get around this problem is to create a dummy section immediately after the
output section in question. For example:

GROUP

{

outsect:

{

start_of outsect = _;

}

dummy: { size_of outsect = . - start_of_outsect; }

8.5.10.6 Address and Dimension Operators
Six operators allow you to define symbols for load-time and run-time addresses and sizes:

LOAD_START(sym) Defines sym with the load-time start address of related allocation unit
START(sym)

LOAD_END(sym) Defines sym with the load-time end address of related allocation unit
END(sym)
LOAD_SIZE(sym) Defines sym with the load-time size of related allocation unit
SIZE(sym)
RUN_START(sym) Defines sym with the run-time start address of related allocation unit
RUN_END(sym) Defines sym with the run-time end address of related allocation unit
RUN_SIZE(sym) Defines sym with the run-time size of related allocation unit
SPRUHV6C-July 2014—-Revised July 2018 Linker Description 211

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

Linker Command File Operator Equivalencies --

NOTE: LOAD_START() and START() are equivalent, as are LOAD_END()/END() and
LOAD_SIZE()/SIZE(). The LOAD names are recommended for clarity.

These address and dimension operators can be associated with several different kinds of allocation units,
including input items, output sections, GROUPs, and UNIONSs. The following sections provide some
examples of how the operators can be used in each case.

These symbols defined by the linker can be accessed at runtime using the _symval operator, which is
essentially a cast operation. For example, suppose your linker command file contains the following:

-text: RUN_START(text_run_start), RUN_SIZE(text_run_size) { *(-text) }
Your C program can access these symbols as follows:

extern char text_run_start, text _run_size;

printf(".text load start is %Ix\n", _symval(&text_run_start));
printf(".text load size is %Ix\n", _symval(&text_run_size));

See Section 8.6.1 for more information about referring to linker symbols in C/C++ code.

8.5.10.6.1 Input Items

Consider an output section specification within a SECTIONS directive:

outsect:
{
sl.obj(.text)
end_of_s1 = .;
start_of_s2 = _;
s2.obj(.text)
end_of_s2 = _;
T
This can be rewritten using the START and END operators as follows:
outsect:
{
sl.obj(-text) { END(end_of_sl1) }
s2._obj(-text) { START(start_of _s2), END(end_of_s2) }
}

The values of end_of sl and end_of s2 will be the same as if you had used the dot operator in the
original example, but start_of s2 would be defined after any necessary padding that needs to be added
between the two .text sections. Remember that the dot operator would cause start_of _s2 to be defined
before any necessary padding is inserted between the two input sections.

The syntax for using these operators in association with input sections calls for braces { } to enclose the
operator list. The operators in the list are applied to the input item that occurs immediately before the list.

8.5.10.6.2 Output Section

The START, END, and SIZE operators can also be associated with an output section. Here is an example:

outsect: START(start_of_outsect), SIZE(size_of_outsect)
{

}

In this case, the SIZE operator defines size_of outsect to incorporate any padding that is required in the
output section to conform to any alignment requirements that are imposed.

<list of input items>

The syntax for specifying the operators with an output section does not require braces to enclose the
operator list. The operator list is simply included as part of the allocation specification for an output
section.

212

Linker Description SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

I

TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

8.5.10.6.3 GROUPs

Here is another use of the START and SIZE operators in the context of a GROUP specification:

GROUP
{

outsectl: { ... }
outsect2: { ... }
} load = ROM, run = RAM, START(group_start), SIZE(group_size);

This can be useful if the whole GROUP is to be loaded in one location and run in another. The copying
code can use group_start and group_size as parameters for where to copy from and how much is to be
copied.

8.5.10.6.4 UNIONSs

The RUN_SIZE and LOAD_SIZE operators provide a mechanism to distinguish between the size of a
UNION's load space and the size of the space where its constituents are going to be copied before they
are run. Here is an example:
UNION: run = RAM, LOAD_START(union_Jload_addr),

LOAD_SI1ZE(union_Id_sz), RUN_SIZE(union_run_sz)

{
.textl: load

-text2: load

ROM, SIZE(textl_size) { fl.obj(-text) }
ROM, SIZE(text2_size) { f2.obj(-text) }

}

Here union_Id_sz is going to be equal to the sum of the sizes of all output sections placed in the union.
The union_run_sz value is equivalent to the largest output section in the union. Both of these symbols
incorporate any padding due to blocking or alignment requirements.

8.5.11 Creating and Filling Holes

The linker provides you with the ability to create areas within output sections that have nothing linked into
them. These areas are called holes. In special cases, uninitialized sections can also be treated as holes.
This section describes how the linker handles holes and how you can fill holes (and uninitialized sections)
with values.

8.5.11.1 Initialized and Uninitialized Sections

There are two rules to remember about the contents of output sections. An output section contains either:
* Raw data for the entire section
* No raw data

A section that has raw data is referred to as initialized. This means that the object file contains the actual
memory image contents of the section. When the section is loaded, this image is loaded into memory at
the section's specified starting address. The .text and .data sections always have raw data if anything was
assembled into them. Named sections defined with the .sect assembler directive also have raw data.

By default, the .bss section (see Reserve Space in the .bss Section) and sections defined with the .usect
directive (see Reserve Uninitialized Space) have no raw data (they are uninitialized). They occupy space
in the memory map but have no actual contents. Uninitialized sections typically reserve space in fast
external memory for variables. In the object file, an uninitialized section has a normal section header and
can have symbols defined in it; no memory image, however, is stored in the section.

8.5.11.2 Creating Holes

You can create a hole in an initialized output section. A hole is created when you force the linker to leave
extra space between input sections within an output section. When such a hole is created, the linker must
supply raw data for the hole.

Holes can be created only within output sections. Space can exist between output sections, but such
space is not a hole. To fill the space between output sections, see Section 8.5.4.2.

SPRUHV6C-July 2014—-Revised July 2018 Linker Description 213
Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Linker Command Files www.ti.com

To create a hole in an output section, you must use a special type of linker assignment statement within
an output section definition. The assignment statement modifies the SPC (denoted by .) by adding to it,
assigning a greater value to it, or aligning it on an address boundary. The operators, expressions, and
syntaxes of assignment statements are described in Section 8.5.10.

The following example uses assignment statements to create holes in output sections:

SECTIONS
{

outsect:

{
filel.obj(-text)

. += 0x0100 /* Create a hole with size 0x0100 */
file2.obj(-text)

. = align(16); /* Create a hole to align the SPC */
file3.obj(.text)

3

The output section outsect is built as follows:

The .text section from filel.obj is linked in.

The linker creates a 256-byte hole.

The .text section from file2.0bj is linked in after the hole.

The linker creates another hole by aligning the SPC on a 16-byte boundary.
Finally, the .text section from file3.0bj is linked in.

a ko

All values assigned to the . symbol within a section refer to the relative address within the section. The
linker handles assignments to the . symbol as if the section started at address 0 (even if you have
specified a binding address). Consider the statement . = align(16) in the example. This statement
effectively aligns the file3.obj .text section to start on a 16-byte boundary within outsect. If outsect is
ultimately allocated to start on an address that is not aligned, the file3.0bj .text section will not be aligned
either.

The . symbol refers to the current run address, not the current load address, of the section.

Expressions that decrement the . symbol are illegal. For example, it is invalid to use the -= operator in an
assignment to the . symbol. The most common operators used in assignments to the . symbol are += and
align.

If an output section contains all input sections of a certain type (such as .text), you can use the following
statements to create a hole at the beginning or end of the output section.

-text: { .+= 0x0100; } /* Hole at the beginning */
.data: { *(.data)
. += 0x0100; } /* Hole at the end */

Another way to create a hole in an output section is to combine an uninitialized section with an initialized
section to form a single output section. In this case, the linker treats the uninitialized section as a hole and
supplies data for it. The following example illustrates this method:

SECTIONS

{

outsect:

filel.obj(.-text)
filel.obj(.bss) /* This becomes a hole */

}
}

Because the .text section has raw data, all of outsect must also contain raw data. Therefore, the
uninitialized .bss section becomes a hole.

Uninitialized sections become holes only when they are combined with initialized sections. If several
uninitialized sections are linked together, the resulting output section is also uninitialized.

214

Linker Description SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Linker Command Files

8.5.11.3 Filling Holes

When a hole exists in an initialized output section, the linker must supply raw data to fill it. The linker fills
holes with a 32-bit fill value that is replicated through memory until it fills the hole. The linker determines
the fill value as follows:

1. If the hole is formed by combining an uninitialized section with an initialized section, you can specify a
fill value for the uninitialized section. Follow the section hame with an = sign and a 32-bit constant. For
example:

SECTIONS
{ outsect:

{

Ffilel.obj(.text)
file2.obj(.bss)= OxFFOOFFOO /* Fill this hole with OxFFOOFFOO */
¥
¥

2. You can also specify a fill value for all the holes in an output section by supplying the fill value after the
section definition:

SECTIONS
{ outsect:fill = OxFFOOFFOO /* Fills holes with OxFFOOFFOO */
{
. += 0x0010; /* This creates a hole */
Ffilel.obj(.text)
filel.obj(-bss) /* This creates another hole */
3
}

3. If you do not specify an initialization value for a hole, the linker fills the hole with the value specified
with the --fill_value option (see Section 8.4.13). For example, suppose the command file link.cmd
contains the following SECTIONS directive:

SECTIONS { _text: { .= 0x0100; } /* Create a 100 word hole */ }
Now invoke the linker with the --fill_value option:
clpru --run_linker --fill_value=OxFFFFFFFF link.cmd

This fills the hole with OxFFFFFFFF.

4. If you do not invoke the linker with the --fill_value option or otherwise specify a fill value, the linker fills
holes with Os.

Whenever a hole is created and filled in an initialized output section, the hole is identified in the link map
along with the value the linker uses to fill it.

8.5.11.4 Explicit Initialization of Uninitialized Sections

You can force the linker to initialize an uninitialized section by specifying an explicit fill value for it in the
SECTIONS directive. This causes the entire section to have raw data (the fill value). For example:

SECTIONS
{
-bss: Ffill = 0x12341234 /* Fills _bss with 0x12341234 */
3
Filling Sections
NOTE: Because filling a section (even with 0s) causes raw data to be generated for the entire
section in the output file, your output file will be very large if you specify fill values for large
sections or holes.
SPRUHV6C-July 2014—-Revised July 2018 Linker Description 215

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS

INSTRUMENTS
Linker Symbols www.ti.com
8.6 Linker Symbols
This section provides information about using and resolving linker symbols.
8.6.1 Using Linker Symbols in C/C++ Applications
Linker symbols have a hame and a value. The value is a 32-bit unsigned integer, even if it represents a
pointer value on a target that has pointers smaller than 32 bits.
The most common kind of symbol is generated by the compiler for each function and variable. The value
represents the target address where that function or variable is located. When you refer to the symbol by
name in the linker command file or in an assembly file, you get that 32-bit integer value.
However, in C and C++ names mean something different. If you have a variable named x that contains
the value Y, and you use the name "x" in your C program, you are actually referring to the contents of
variable x. If "x" is used on the right-hand side of an expression, the compiler fetches the value Y. To
realize this variable, the compiler generates a linker symbol named x with the value &x. Even though the
C/C++ variable and the linker symbol have the same name, they don't represent the same thing. In C, x is
a variable name with the address &x and content Y. For linker symbols, x is an address, and that address
contains the value Y.
Because of this difference, there are some tricks to referring to linker symbols in C code. The basic
technique is to cause the compiler to creating a "fake" C variable or function and take its address. The
details differ depending on the type of linker symbol.
Linker symbols that represent a function address: In C code, declare the function as an extern
function. Then, refer to the value of the linker symbol using the same name. This works because function
pointers "decay" to their address value when used without adornment. For example:
extern void _c_int0O0(void);
printf(*"_c_int00 %Ix\n", (unsigned long)&_ c_int00);
Suppose your linker command file defines the following linker symbol:
func_sym=printf+100;
Your C application can refer to this symbol as follows:
extern void func_sym(void);
printf("func_sym %Ix\n", _symval(&func_sym)); /* these two are equivalent */
printf(*"func_sym %Ix\n", (unsigned long)&func_sym);
Linker symbols that represent a data address: In C code, declare the variable as an extern variable.
Then, refer to the value of the linker symbol using the & operator. Because the variable is at a valid data
address, we know that a data pointer can represent the value.
Suppose your linker command file defines the following linker symbols:
data_sym=_data+100;
Xyz=12345
Your C application can refer to these symbols as follows:
extern char data_sym;
extern int xyz;
printf(*'data_sym %Ix\n", _symval(&data_sym)); /* these two are equivalent */
printf(*'data_sym %p\n', &data_sym);
myvar = &xyz;
216 Linker Description SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

I

TEXAS

INSTRUMENTS

www.ti.com Linker Symbols

8.6.2

8.6.3

Linker symbols for an arbitrary address: In C code, declare this as an extern symbol. The type does
not matter. If you are using GCC extensions, declare it as "extern void". If you are not using GCC
extensions, declare it as "extern char". Then, refer to the value of the linker symbol mySymbol as
_symval(&mySymbol). You must use the _symval operator, which is equivalent to a cast, because the 32-
bit value of the linker symbol could be wider than a data pointer. The compiler treats _symval(&mySymbol)
in a special way that can represent all 32 bits, even when pointers are 16 bits. Targets that have 32-bit
pointers can usually use &mySymbol instead of the _symval operator. However, the portable way to
access such linker symbols across Tl targets is to use _symval(&mySymbol).

Suppose your linker command file defines the following linker symbol:
abs_sym=0x12345678;

Your C application can refer to this symbol as follows:

extern char abs_sym;

printf('abs_sym %Ix\n", _symval(&abs_sym));

Declaring Weak Symbols

In a linker command file, an assignment expression outside a MEMORY or SECTIONS directive can be
used to define a linker-defined symbol. To define a weak symbol in a linker command file, use the "weak"
operator in an assignment expression to designate that the symbol as eligible for removal from the output
file's symbol table if it is not referenced. For example, you can define "ext_addr_sym" as follows:

weak(ext_addr_sym) = 0x12345678;

When the linker command file is used to perform the final link, then "ext_addr_sym" is presented to the
linker as a weak absolute symbol; it will not be included in the resulting output file if the symbol is not
referenced.

See Section 2.6.2 for details about how weak symbols are handled by the linker.

Resolving Symbols with Object Libraries

An object library is a partitioned archive file that contains object files as members. Usually, a group of
related modules are grouped together into a library. When you specify an object library as linker input, the
linker includes any members of the library that define existing unresolved symbol references. You can use
the archiver to build and maintain libraries. Section 7.1 contains more information about the archiver.

Using object libraries can reduce link time and the size of the executable module. Normally, if an object
file that contains a function is specified at link time, the file is linked whether the function is used or not;
however, if that same function is placed in an archive library, the file is included only if the function is
referenced.

The order in which libraries are specified is important, because the linker includes only those members
that resolve symbols that are undefined at the time the library is searched. The same library can be
specified as often as necessary; it is searched each time it is included. Alternatively, you can use the --
reread_libs option to reread libraries until no more references can be resolved (see Section 8.4.16.3). A
library has a table that lists all external symbols defined in the library; the linker searches through the table
until it determines that it cannot use the library to resolve any more references.

SPRUHV6C-July 2014—-Revised July 2018 Linker Description 217
Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Linker Symbols www.ti.com

The following examples link several files and libraries, using these assumptions:
* Input files f1.0bj and f2.0bj both reference an external function named clrscr.
* Input file f1.0bj references the symbol origin.

» Input file f2.0bj references the symbol fillclr.

e Member 0 of library libc.lib contains a definition of origin.

 Member 3 of library liba.lib contains a definition of fillclr.

* Member 1 of both libraries defines clrscr.

If you enter:

clpru --run_linker fl.obj f2.obj liba.lib libc.lib

then:

» Member 1 of liba.lib satisfies the f1.0bj and f2.0bj references to clrscr because the library is searched
and the definition of clrscr is found.

« Member 0 of libc.lib satisfies the reference to origin.

» Member 3 of liba.lib satisfies the reference to fillclr.

If, however, you enter:

clpru --run_linker fl.obj f2.obj libc.lib liba.lib
then the references to clrscr are satisfied by member 1 of libc.lib.

If none of the linked files reference symbols defined in a library, you can use the --undef_sym option to
force the linker to include a library member. (See Section 8.4.32.) The next example creates an undefined
symbol routl in the linker's global symbol table:

clpru --run_linker --undef_sym=routl libc.lib
If any member of libc.lib defines routl, the linker includes that member.

Library members are allocated according to the SECTIONS directive default allocation algorithm; see
Section 8.5.5.

Section 8.4.16 describes methods for specifying directories that contain object libraries.

218

Linker Description SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

I

TEXAS
INSTRUMENTS

www.ti.com Default Placement Algorithm

8.7

Default Placement Algorithm

The MEMORY and SECTIONS directives provide flexible methods for building, combining, and allocating
sections. However, any memory locations or sections you choose not to specify must still be handled by
the linker. The linker uses algorithms to build and allocate sections in coordination with any specifications
you do supply.

If you do not use the MEMORY and SECTIONS directives, the linker allocates output sections as though
the memory map and section definitions were as shown in Example 8-14 were specified.

Example 8-14. Default Allocation for PRU Devices

{
RAM : origin = 0x00000000, length = OXFFFFFFFF
3
SECTIONS
{
.text 1 ALIGN(4) {} > RAM
.const: ALIGN(4) {} > RAM
.data : ALIGN(4) {} > RAM
.bss : ALIGN(4Q) {} > RAM
.cinit: ALIGN(4) {} > RAM /* -c option only */
-pinit: ALIGN(4) {} > RAM /* -c option only */
b
Also see Section 2.5.1 for information about default memory allocation.
All .text input sections are concatenated to form a .text output section in the executable output file, and all
.data input sections are combined to form a .data output section.
If you use a SECTIONS directive, the linker performs no part of this default allocation. Instead, allocation
is performed according to the rules specified by the SECTIONS directive and the general algorithm
described next in Section 8.7.1.
8.7.1 How the Allocation Algorithm Creates Output Sections
An output section can be formed in one of two ways:
Method 1 As the result of a SECTIONS directive definition
Method 2 By combining input sections with the same name into an output section that is not defined in
a SECTIONS directive
If an output section is formed as a result of a SECTIONS directive, this definition completely determines
the section's contents. (See Section 8.5.5 for examples of how to define an output section's content.)
If an output section is formed by combining input sections not specified by a SECTIONS directive, the
linker combines all such input sections that have the same name into an output section with that name.
For example, suppose the files f1.obj and f2.obj both contain named sections called Vectors and that the
SECTIONS directive does not define an output section for them. The linker combines the two Vectors
sections from the input files into a single output section named Vectors, allocates it into memory, and
includes it in the output file.
By default, the linker does not display a message when it creates an output section that is not defined in
the SECTIONS directive. You can use the --warn_sections linker option (see Section 8.4.33) to cause the
linker to display a message when it creates a hew output section.
After the linker determines the composition of all output sections, it must allocate them into configured
memory. The MEMORY directive specifies which portions of memory are configured. If there is no
MEMORY directive, the linker uses the default configuration as shown in Example 8-14. (See
Section 8.5.4 for more information on configuring memory.)
SPRUHV6C-July 2014—-Revised July 2018 Linker Description 219

Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS

INSTRUMENTS
Default Placement Algorithm www.ti.com
8.7.2 Reducing Memory Fragmentation

The linker's allocation algorithm attempts to minimize memory fragmentation. This allows memory to be

used more efficiently and increases the probability that your program will fit into memory. The algorithm

comprises these steps:

1. Each output section for which you supply a specific binding address is placed in memory at that
address.

2. Each output section that is included in a specific, named memory range or that has memory attribute
restrictions is allocated. Each output section is placed into the first available space within the named
area, considering alignment where necessary.

3. Any remaining sections are allocated in the order in which they are defined. Sections not defined in a
SECTIONS directive are allocated in the order in which they are encountered. Each output section is
placed into the first available memory space, considering alignment where necessary.

If you want to control the order in which code and data are placed in memory, see the FAQ topic on

section placement.

8.8 Linker-Generated Copy Tables

The linker supports extensions to the linker command file syntax that enable the following:

» Make it easier for you to copy objects from load-space to run-space at boot time

» Make it easier for you to manage memory overlays at run time

* Allow you to split GROUPs and output sections that have separate load and run addresses

8.8.1 Using Copy Tables for Boot Loading

In some embedded applications, there is a need to copy or download code and/or data from one location

to another at boot time before the application actually begins its main execution thread. For example, an

application may have its code and/or data in FLASH memory and need to copy it into on-chip memory
before the application begins execution.

One way to develop such an application is to create a copy table in assembly code that contains three

elements for each block of code or data that needs to be moved from FLASH to on-chip memory at boot

time:

* The load address

e The run address

* The size

The process you follow to develop such an application might look like this:

1. Build the application to produce a .map file that contains the load and run addresses of each section
that has a separate load and run placement.

2. Edit the copy table (used by the boot loader) to correct the load and run addresses as well as the size
of each block of code or data that needs to be moved at boot time.

3. Build the application again, incorporating the updated copy table.

4. Run the application.

This process puts a heavy burden on you to maintain the copy table (by hand, no less). Each time a piece

of code or data is added or removed from the application, you must repeat the process in order to keep

the contents of the copy table up to date.
220 Linker Description SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C
http://processors.wiki.ti.com/index.php/Code_Generation_Tools_FAQ#Q:_How_can_I_get_the_linker_to_place_a_piece_of_code_or_data_so_that_it_comes_before_all_the_rest.3F
http://processors.wiki.ti.com/index.php/Code_Generation_Tools_FAQ#Q:_How_can_I_get_the_linker_to_place_a_piece_of_code_or_data_so_that_it_comes_before_all_the_rest.3F

13 TEXAS
INSTRUMENTS

www.ti.com Linker-Generated Copy Tables

8.8.2 Using Built-in Link Operators in Copy Tables

You can avoid some of this maintenance burden by using the LOAD_START(), RUN_START(), and
SIZE() operators that are already part of the linker command file syntax . For example, instead of building
the application to generate a .map file, the linker command file can be annotated:

SECTIONS
{

-Flashcode: { app_tasks.obj(-text) }
load = FLASH, run = PMEM,
LOAD_START(_flash_code_Id_start),
RUN_START(_flash_code_rn_start),
SIZE(_flash_code_size)

}

In this example, the LOAD_START(), RUN_START(), and SIZE() operators instruct the linker to create
three symbols:

Symbol Description

_flash_code_Id_start Load address of .flashcode section
_flash_code_rn_start Run address of .flashcode section
_flash_code_size Size of .flashcode section

These symbols can then be referenced from the copy table. The actual data in the copy table will be
updated automatically each time the application is linked. This approach removes step 1 of the process
described in Section 8.8.1.

While maintenance of the copy table is reduced markedly, you must still carry the burden of keeping the
copy table contents in sync with the symbols that are defined in the linker command file. Ideally, the linker
would generate the boot copy table automatically. This would avoid having to build the application twice
and free you from having to explicitly manage the contents of the boot copy table.

For more information on the LOAD_START(), RUN_START(), and SIZE() operators, see Section 8.5.10.6.

8.8.3 Overlay Management Example

Consider an application that contains a memory overlay that must be managed at run time. The memory
overlay is defined using a UNION in the linker command file as illustrated in Example 8-15:

Example 8-15. Using a UNION for Memory Overlay

SECTIONS
{
UNION
{
GROUP

{
.taskl: { taskl.obj(.-text) }
.task2: { task2.obj(-text) }

} load = ROM, LOAD_START(taskl12_load_start), SIZE(_ taskl2_size)

GROUP

{
-task3: { task3.obj(-text) }
.task4: { task4.obj(-text) }

} load = ROM, LOAD_START(task34 load_start), SIZE(task 34_size)
} run = RAM, RUN_START(_ task_run_start)

SPRUHV6C-July 2014—-Revised July 2018 Linker Description 221

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Linker-Generated Copy Tables www.ti.com

8.8.4

The application must manage the contents of the memaory overlay at run time. That is, whenever any
services from .taskl or .task2 are needed, the application must first ensure that .taskl and .task2 are
resident in the memory overlay. Similarly for .task3 and .task4.

To affect a copy of .taskl and .task2 from ROM to RAM at run time, the application must first gain access
to the load address of the tasks (_task12 load_start), the run address (_task run_start), and the size
(_task12_size). Then this information is used to perform the actual code copy.

Generating Copy Tables With the table() Operator

The linker supports extensions to the linker command file syntax that enable you to do the following:

» Identify any object components that may need to be copied from load space to run space at some
point during the run of an application

» Instruct the linker to automatically generate a copy table that contains (at least) the load address, run
address, and size of the component that needs to be copied

» Instruct the linker to generate a symbol specified by you that provides the address of a linker-
generated copy table. For instance, Example 8-15 can be written as shown in Example 8-16:

Example 8-16. Produce Address for Linker Generated Copy Table

SECTIONS

{

UNION

{

}

GROUP

{
.taskl: { taskl.obj(-text) }
.task2: { task2.obj(-text) }

} load = ROM, table(_taskl2_copy_table)

GROUP

{
-task3: { task3.obj(-text) }

.task4: { task4.obj(-text) }
} load = ROM, table(_task34_copy_table)

run = RAM

Using the SECTIONS directive from Example 8-16 in the linker command file, the linker generates two
copy tables named: _task12 copy_table and _task34_copy_table. Each copy table provides the load
address, run address, and size of the GROUP that is associated with the copy table. This information is
accessible from application source code using the linker-generated symbols, task12 copy_table and
_task34 copy_table, which provide the addresses of the two copy tables, respectively.

Using this method, you need not worry about the creation or maintenance of a copy table. You can
reference the address of any copy table generated by the linker in C/C++ or assembly source code,
passing that value to a general purpose copy routine, which will process the copy table and affect the
actual copy.

222

Linker Description SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Linker-Generated Copy Tables

8.8.4.1 The table() Operator

You can use the table() operator to instruct the linker to produce a copy table. A table() operator can be
applied to an output section, a GROUP, or a UNION member. The copy table generated for a particular
table() specification can be accessed through a symbol specified by you that is provided as an argument
to the table() operator. The linker creates a symbol with this name and assigns it the address of the copy
table as the value of the symbol. The copy table can then be accessed from the application using the
linker-generated symbol.

Each table() specification you apply to members of a given UNION must contain a unique name. If a
table() operator is applied to a GROUP, then none of that GROUP's members may be marked with a
table() specification. The linker detects violations of these rules and reports them as warnings, ignoring
each offending use of the table() specification. The linker does not generate a copy table for erroneous
table() operator specifications.

Copy tables can be generated automatically; see Section 8.8.4.

8.8.4.2 Boot-Time Copy Tables

The linker supports a special copy table name, BINIT (or binit), that you can use to create a boot-time
copy table. This table is handled before the .cinit section is used to initialize variables at startup. For
example, the linker command file for the boot-loaded application described in Section 8.8.2 can be
rewritten as follows:

SECTIONS

{
-Flashcode: { app_tasks.obj(-text) }
load = FLASH, run = PMEM,
table(BINIT)

}

For this example, the linker creates a copy table that can be accessed through a special linker-generated
symbol, _ binit__, which contains the list of all object components that need to be copied from their load
location to their run location at boot-time. If a linker command file does not contain any uses of
table(BINIT), then the __ binit__ symbol is given a value of -1 to indicate that a boot-time copy table does
not exist for a particular application.

You can apply the table(BINIT) specification to an output section, GROUP, or UNION member. If used in
the context of a UNION, only one member of the UNION can be designated with table(BINIT). If applied to
a GROUP, then none of that GROUP's members may be marked with table(BINIT).The linker detects
violations of these rules and reports them as warnings, ignoring each offending use of the table(BINIT)
specification.

8.8.4.3 Using the table() Operator to Manage Object Components

If you have several pieces of code that need to be managed together, then you can apply the same table()
operator to several different object components. In addition, if you want to manage a particular object
component in multiple ways, you can apply more than one table() operator to it. Consider the linker
command file excerpt in Example 8-17:

SPRUHV6C-July 2014—-Revised July 2018 Linker Description 223

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Linker-Generated Copy Tables www.ti.com

Example 8-17. Linker Command File to Manage Object Components

SECTIONS

{
UNION

{
-First: { al.obj(.text), bl.obj(.text), cl.obj(.-text) }

load = EMEM, run = PMEM, table(BINIT), table(_first_ctbl)

.second: { a2.obj(.text), b2.obj(-text) }
load = EMEM, run = PMEM, table(_second_ctbl)

}

.extra: load = EMEM, run = PMEM, table(BINIT)

In this example, the output sections .first and .extra are copied from external memory (EMEM) into
program memory (PMEM) at boot time while processing the BINIT copy table. After the application has
started executing its main thread, it can then manage the contents of the overlay using the two overlay
copy tables named: _first_ctbl and _second_ctbl.

8.8.4.4 Linker-Generated Copy Table Sections and Symbols

The linker creates and allocates a separate input section for each copy table that it generates. Each copy
table symbol is defined with the address value of the input section that contains the corresponding copy
table.

The linker generates a unique name for each overlay copy table input section. For example,
table(_first_ctbl) would place the copy table for the .first section into an input section called
.ovly:_first_ctbl. The linker creates a single input section, .binit, to contain the entire boot-time copy table.

Example 8-18 illustrates how you can control the placement of the linker-generated copy table sections
using the input section hames in the linker command file.

Example 8-18. Controlling the Placement of the Linker-Generated Copy Table Sections

SECTIONS

{
UNION

{
_First: { al.obj(.text), bl.obj(.text), cl.obj(.-text) }
load = EMEM, run = PMEM, table(BINIT), table(_first_ctbl)

.second: { a2.obj(.text), b2.obj(-text) }
load = EMEM, run = PMEM, table(_second_ctbl)

}

.extra: load = EMEM, run = PMEM, table(BINIT)

.ovly: { } > BMEM
.binit: { } > BMEM
}

For the linker command file in Example 8-18, the boot-time copy table is generated into a .binit input
section, which is collected into the .binit output section, which is mapped to an address in the BMEM
memory area. The _first_ctbl is generated into the .ovly:_first_ctbl input section and the _second_ctbl is
generated into the .ovly:_second_ctbl input section. Since the base names of these input sections match
the name of the .ovly output section, the input sections are collected into the .ovly output section, which is
then mapped to an address in the BMEM memory area.

224 Linker Description SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Linker-Generated Copy Tables

If you do not provide explicit placement instructions for the linker-generated copy table sections, they are
allocated according to the linker's default placement algorithm.

The linker does not allow other types of input sections to be combined with a copy table input section in
the same output section. The linker does not allow a copy table section that was created from a partial link
session to be used as input to a succeeding link session.

8.8.4.5 Splitting Object Components and Overlay Management

It is possible to split sections that have separate load and run placement instructions. The linker can
access both the load address and run address of every piece of a split object component. Using the
table() operator, you can tell the linker to generate this information into a copy table. The linker gives each
piece of the split object component a COPY_RECORD entry in the copy table object.

For example, consider an application which has seven tasks. Tasks 1 through 3 are overlaid with tasks 4
through 7 (using a UNION directive). The load placement of all of the tasks is split among four different
memory areas (LMEM1, LMEM2, LMEM3, and LMEM4). The overlay is defined as part of memory area
PMEM. You must move each set of tasks into the overlay at run time before any services from the set are
used.

You can use table() operators in combination with splitting operators, >>, to create copy tables that have
all the information needed to move either group of tasks into the memory overlay as shown in Example 8-
19.

Example 8-19. Creating a Copy Table to Access a Split Object Component

SECTIONS
{
UNION
{
-tasklto3: { *(.taskl), *(.task?), *(.task3) }
load >> LMEM1 | LMEM2 | LMEM4, table(_taskl3_ctbl)

GROUP

{
.task4: { *(.task4) }

-task5: { *(.task5) }
.task6: { *(.task6) }
.task7: { *(.task7) }
} load >> LMEM1 | LMEM3 | LMEM4, table(_task47_ctbl)
} run = PMEM

.ovly: > LMEM4

SPRUHV6C-July 2014—-Revised July 2018 Linker Description 225

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Linker-Generated Copy Tables www.ti.com

Example 8-20 illustrates a possible driver for such an application.

Example 8-20. Split Object Component Driver

#include <cpy_tbl._h>

extern far COPY_TABLE taskl13_ctbl;
extern far COPY_TABLE task47_ctbl;

extern void taskl(void);
extern void task7(void);

main()

{

copy_in(&taskl3_ctbl);
taskl1(Q);
task2();
task3();

copy_in(&task47_ctbl);
task4(Q);
task5Q);
task6();
task7(Q);

You must declare a COPY_TABLE object as far to allow the overlay copy table section placement to be
independent from the other sections containing data objects (such as .bss).

The contents of the .task1to3 section are split in the section’s load space and contiguous in its run space.
The linker-generated copy table, task13_cthl, contains a separate COPY_RECORD for each piece of the
split section .task1to3. When the address of _task13_cthl is passed to copy_in(), each piece of .task1to3
is copied from its load location into the run location.

The contents of the GROUP containing tasks 4 through 7 are also split in load space. The linker performs
the GROUP split by applying the split operator to each member of the GROUP in order. The copy table for
the GROUP then contains a COPY_RECORD entry for every piece of every member of the GROUP.
These pieces are copied into the memory overlay when the _task47_ctbl is processed by copy_in().

The split operator can be applied to an output section, GROUP, or the load placement of a UNION or
UNION member. The linker does not permit a split operator to be applied to the run placement of either a
UNION or of a UNION member. The linker detects such violations, emits a warning, and ignores the
offending split operator usage.

226 Linker Description SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Linker-Generated Copy Tables

8.8.5 Compression

When automatically generating copy tables, the linker provides a way to compress the load-space data.
This can reduce the read-only memory foot print. This compressed data can be decompressed while
copying the data from load space to run space.

You can specify compression in two ways:

e The linker command line option --copy_compression=compression_kind can be used to apply the
specified compression to any output section that has a table() operator applied to it.

» The table() operator accepts an optional compression parameter. The syntax is: .
table(name , compression= compression_kind)
The compression_kind can be one of the following types:
— off. Don't compress the data.
— rle. Compress data using Run Length Encoding.
— lzss. Compress data using Lempel-Ziv-Storer-Szymanski compression.
A table() operator without the compression keyword uses the compression kind specified using the
command line option --copy_compression.

When you choose compression, it is not guaranteed that the linker will compress the load data. The linker
compresses load data only when such compression reduces the overall size of the load space. In some
cases even if the compression results in smaller load section size the linker does not compress the data if
the decompression routine offsets for the savings.

For example, assume RLE compression reduces the size of sectionl by 30 bytes. Also assume the RLE
decompression routine takes up 40 bytes in load space. By choosing to compress sectionl the load space
is increased by 10 bytes. Therefore, the linker will not compress sectionl. On the other hand, if there is
another section (say section2) that can benefit by more than 10 bytes from applying the same
compression then both sections can be compressed and the overall load space is reduced. In such cases
the linker compresses both the sections.

You cannot force the linker to compress the data when doing so does not result in savings.
You cannot compress the decompression routines or any member of a GROUP containing .cinit.

8.8.5.1 Compressed Copy Table Format

The copy table format is the same irrespective of the compression_kind. The size field of the copy record
is overloaded to support compression. Figure 8-4 illustrates the compressed copy table layout.

Figure 8-4. Compressed Copy Table

Rec size Rec cnt
Load address Run address |Size (0 if load data is compressed)l

In Figure 8-4, if the size in the copy record is non-zero it represents the size of the data to be copied, and
also means that the size of the load data is the same as the run data. When the size is 0, it means that
the load data is compressed.

8.8.5.2 Compressed Section Representation in the Object File

The linker creates a separate input section to hold the compressed data. Consider the following table()
operation in the linker command file.

SECTIONS

{

}

The output object file has one output section named .taskl which has different load and run addresses.
This is possible because the load space and run space have identical data when the section is not
compressed.

-taskl: load = ROM, run = RAM, table(_taskl_table)

SPRUHV6C-July 2014—-Revised July 2018 Linker Description 227

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Linker-Generated Copy Tables www.ti.com

Alternatively, consider the following:

SECTIONS
{

}

If the linker compresses the .taskl section then the load space data and the run space data are different.
The linker creates the following two sections:

» .taskl : This section is uninitialized. This output section represents the run space image of section
taskl.

» .taskl.load : This section is initialized. This output section represents the load space image of the
section taskl. This section usually is considerably smaller in size than .task1 output section.

-taskl: load = ROM, run = RAM, table(_taskl_table, compression=rle)

The linker allocates load space for the .taskl.load input section in the memory area that was specified for
load placement for the .task1 section. There is only a single load section to represent the load placement
of .taskl - .taskl.load. If the .taskl data had not been compressed, there would be two allocations for the
.taskl input section: one for its load placement and another for its run placement.

8.8.5.3 Compressed Data Layout

The compressed load data has the following layout:

‘ -bit index ‘ Compressed data ‘

The first bits of the load data are the handler index. This handler index is used to index into a handler
table to get the address of a handler function that knows how to decode the data that follows. The handler
table is a list of 32-bit function pointers as shown in Figure 8-5.

Figure 8-5. Handler Table

_Tl_Handler_Table_Base:

32-bit handler address 1

32-bit handler address N

_TI_Handler_Table_Limit:

The linker creates a separate output section for the load and run space. For example, if .taskl.load is
compressed using RLE, the handler index points to an entry in the handler table that has the address of
the run-time-support routine __ TI_decompress_rle().

8.8.5.4 Run-Time Decompression

During run time you call the run-time-support routine copy_in() to copy the data from load space to run
space. The address of the copy table is passed to this routine. First the routine reads the record count.
Then it repeats the following steps for each record:

1. Read load address, run address and size from record.

If size is zero go to step 5.

Call memcpy passing the run address, load address and size.
Go to step 1 if there are more records to read.

Read the first from the load address.

Read the handler address from (&__TI_Handler_Base)[index].
Call the handler and pass load address + 1 and run address.
Go to step 1 if there are more records to read.

© N O A WD

The routines to handle the decompression of load data are provided in the run-time-support library.

228

Linker Description SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Linker-Generated Copy Tables

8.8.5.5 Compression Algorithms

The following subsections provide information about decompression algorithms for the RLE and LZSS
formats. To see example decompression algorithms, refer to the following functions in the Run-Time
Support library:

* RLE: The __TI_decompress_rle() function in the copy_decompress_rle.c file.
e LZSS: The __TI_decompress_lzss() function in the copy_decompress_lzss.c file.

Run Length Encoding (RLE):

‘ -bit index ‘ Initialization data compressed using run length encoding

The data following the -bit index is compressed using run length encoded (RLE) format. PRU uses a
simple run length encoding that can be decompressed using the following algorithm:

1. Read the first, Delimiter (D).

2. Read the next (B).

3. If B !=D, copy B to the output buffer and go to step 2.

4. Read the next (L).
a. If L ==0, then length is either a value, or we've reached the end of the data, read next (L).
b. Elseif L >0 and L < 4, copy D to the output buffer L times. Go to step 2.
c. Else, length is -bit value (L).

5. Read the next (C); C is the repeat character.

6. Write C to the output buffer L times; go to step 2.

7. End of processing.

The PRU run-time support library has a routine __ Tl _decompress_rle() to decompress data compressed

using RLE. The first argument to this function is the address pointing to the after the -bit index. The
second argument is the run address from the C auto initialization record.

Lempel-Ziv-Storer-Szymanski Compression (LZSS):

‘ -bit index ‘ Data compressed using LZSS ‘

The data following the 8-bit index is compressed using LZSS compression. The PRU run-time-support
library has the routine __ Tl _decompress_lzss() to decompress the data compressed using LZSS. The first
argument to this function is the address pointing to the after the -bit Index, and the second argument is the
run address from the C auto initialization record.

SPRUHV6C-July 2014—-Revised July 2018 Linker Description 229

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Linker-Generated Copy Tables www.ti.com

8.8.6 Copy Table Contents

To use a copy table generated by the linker, you must know the contents of the copy table. This
information is included in a run-time-support library header file, cpy_tbl.h, which contains a C source
representation of the copy table data structure that is generated by the linker.

For each object component that is marked for a copy, the linker creates a COPY_RECORD object for it.
Each COPY_RECORD contains at least the following information for the object component:

* The load address

e The run address

» The size

The linker collects all COPY_RECORDSs that are associated with the same copy table into a
COPY_TABLE object. The COPY_TABLE object contains the size of a given COPY_RECORD, the
number of COPY_RECORD:s in the table, and the array of COPY_RECORDsSs in the table. For instance, in

the BINIT example in Section 8.8.4.2, the .first and .extra output sections will each have their own
COPY_RECORD entries in the BINIT copy table. The BINIT copy table will then look like this:

/ /
/* Copy Record Data Structure */
/ /
typedef struct copy_record

{

unsigned int load_addr;
unsigned int run_addr;
unsigned int size;

} COPY_RECORD;

/ /
/* Copy Table Data Structure */
/ /
typedef struct copy_table

{

unsigned short rec_size;

unsigned short num_recs;

COPY_RECORD recs[1];
} COPY_TABLE;

8.8.7 General Purpose Copy Routine

The cpy_tbl.h file also contains a prototype for a general-purpose copy routine, copy_in(), which is
provided as part of the run-time-support library. The copy_in() routine takes a single argument: the
address of a linker-generated copy table. The routine then processes the copy table data object and
performs the copy of each object component specified in the copy table.

The copy_in() function definition is provided in the cpy_tbl.c run-time-support source file shown in
Example 8-21.

Example 8-21. Run-Time-Support cpy_tbl.c File

/ /
/* cpy_tbl.c v###HH */
/* Copyright (c) 2014 Texas Instruments Incorporated */
/* */
/* General purpose copy routine. Given the address of a linker-generated */
/* COPY_TABLE data structure, effect the copy of all object components */
/* that are designated for copy via the corresponding LCF table() operator. */
/ /

#include <cpy_tbl.h>
#include <string.h>

typedef void (*handler_fptr)(const unsigned char *in, unsigned char *out)
#define HANDLER_TABLE _ TI_Handler_Table_Base
#pragma WEAK(HANDLER_TABLE)

230 Linker Description SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com

Partial (Incremental) Linking

Example 8-21. Run-Time-Support cpy_tbl.c File (continued)

extern

unsigned short HANDLER_TABLE;

/

/* COPY_INQ */

/

void copy_in(COPY_TABLE *tp)

{

unsigned short i;

for (i = 0; i < tp->num_recs; i++)

{

}
}

COPY_RECORD crp = tp->recs[i];

unsigned char *1d_addr
unsigned char *rn_addr

(unsigned char *)crp.load_addr;
(unsigned char *)crp.run_addr;

if (crp.size)

{

}

/* __ */
/* Copy record has a non-zero size so the data is not compressed. */
/* Just copy the data. */
/* __ */
memcpy(rn_addr, Id_addr, crp.size);

else if (HANDLER_TABLE)

{

}

unsigned char index = *((unsigned char *)I1d_addr++);
handler_fptr hndl = (handler_fptr) (&HANDLER_TABLE)[index];
(*hndl) ((const unsigned char *)Id_addr, (unsigned char *)rn_addr);

8.9 Partial (Incremental) Linking

An output file that has been linked can be linked again with additional modules. This is known as partial
linking or incremental linking. Partial linking allows you to partition large applications, link each part
separately, and then link all the parts together to create the final executable program.

Follow these guidelines for producing a file that you will relink:

The intermediate files produced by the linker must have relocation information. Use the --relocatable
option when you link the file the first time. (See Section 8.4.3.2.)

Intermediate files must have symbolic information. By default, the linker retains symbolic information in
its output. Do not use the --no_sym_table option if you plan to relink a file, because --no_sym_table
strips symbolic information from the output module. (See Section 8.4.22.)

Intermediate link operations should be concerned only with the formation of output sections and not
with allocation. All allocation, binding, and MEMORY directives should be performed in the final link.

Since the ELF object file format is used, input sections are not combined into output sections during a
partial link unless a matching SECTIONS directive is specified in the link step command file.

If the intermediate files have global symbols that have the same name as global symbols in other files
and you want them to be treated as static (visible only within the intermediate file), you must link the
files with the --make_static option (see Section 8.4.17.1).

If you are linking C code, do not use --ram_model or --rom_model until the final linker. Every time you
invoke the linker with the --ram_model or --rom_model option, the linker attempts to create an entry
point. (See Section 8.4.25 and Section 3.3.2.)

The following example shows how you can use patrtial linking:

SPRUHV6C-July 2014—-Revised July 2018 Linker Description 231
Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS

INSTRUMENTS
Linking C/C++ Code www.ti.com
Step 1: Link the file filel.com; use the --relocatable option to retain relocation information in the
output file tempoutl.out.
clpru --run_linker --relocatable --output_file=tempoutl filel.com
filel.com contains:
SECTIONS
{
ssl: {
fl.obj
f2.0bj
fn.ob J]
}
}
Step 2: Link the file file2.com; use the --relocatable option to retain relocation information in the

output file tempout2.out.
clpru --run_linker --relocatable --output_file=tempout2 file2.com

file2.com contains:

SECTIONS
{

Ss2: {
gl.obj
g2.0bj
gn.obj
}

}

Step 3: Link tempoutl.out and tempout2.out.
clpru --run_linker --map_file=Ffinal_map --
output_file=final.out tempoutl.out tempout2.out

8.10 Linking C/C++ Code
The C/C++ compiler produces assembly language source code that can be assembled and linked. For
example, a C program consisting of modules progl, prog2, etc., can be assembled and then linked to
produce an executable file called prog.out:
clpru --run_linker --rom_model --
output_file prog.out progl.obj prog2.obj ... rtspruv3_le.lib
The --rom_model option tells the linker to use special conventions that are defined by the C/C++
environment.
The archive libraries shipped by Tl contain C/C++ run-time-support functions.
C, C++, and mixed C and C++ programs can use the same run-time-support library. Run-time-support
functions and variables that can be called and referenced from both C and C++ will have the same
linkage.
For more information about the PRU C/C++ language, including the run-time environment and run-time-
support functions, see the PRU Optimizing C/C++ Compiler User's Guide.

232 Linker Description SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Linking C/C++ Code

8.10.1 Run-Time Initialization

All C/C++ programs must be linked with code to initialize and execute the program, called a bootstrap
routine, also known as the boot.obj object module. The symbol _c_int00 is defined as the program entry
point and is the start of the C boot routine in boot.obj; referencing _c_int00 ensures that boot.obj is
automatically linked in from the run-time-support library. When a program begins running, it executes
boot.obj first. The boot.obj symbol contains code and data for initializing the run-time environment and
performs the following tasks:

* Changes from system mode to user mode
e Sets up the user mode stack

» Processes the run-time .cinit initialization table and autoinitializes global variables (when the linker is
invoked with the --rom_model option)

* Calls main
The run-time-support object libraries contain boot.obj. You can:
» Use the archiver to extract boot.obj from the library and then link the module in directly.

* Include the appropriate run-time-support library as an input file (the linker automatically extracts
boot.obj when you use the --ram_model or --rom_model option).

8.10.2 Obiject Libraries and Run-Time Support

The PRU Optimizing C/C++ Compiler User's Guide describes additional run-time-support functions that
are included in rts.src. If your program uses any of these functions, you must link the appropriate run-time-
support library with your object files.

You can also create your own object libraries and link them. The linker includes and links only those
library members that resolve undefined references.

8.10.3 Setting the Size of the Stack and Heap Sections

The C/C++ language uses two uninitialized sections called .sysmem and .stack for the memory pool used
by the malloc() functions and the run-time stacks, respectively. You can set the size of these by using the
--heap_size or --stack_size option and specifying the size of the section as a 4-byte constant immediately
after the option. If the options are not used, the default size of the heap is 256 bytes and the default size
of the stack is 256 bytes.

See Section 8.4.14 for setting heap sizes Section 8.4.29 for setting stack sizes.

8.10.4 Initializing and Autolnitialzing Variables at Run Time

Autoinitializing variables at run time is the default method of autoinitialization. To use this method, invoke
the linker with the --rom_model option. See Section 3.3.2 for details.

Initialization of variables at load time enhances performance by reducing boot time and by saving the
memory used by the initialization tables. To use this method, invoke the linker with the --ram_model
option. See Section 3.3.2 for details.

SPRUHV6C-July 2014—-Revised July 2018 Linker Description 233

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Linker Example www.ti.com

8.11

Linker Example

This example links three object files named demo.obj, ctrl.obj, and tables.obj and creates a program called
demo.out.

Assume that target memory has the following program memory configuration:

Address Range Contents
0x00000000 to 0x00001000 SLOW_MEM
0x00001000 to 0x00002000 FAST _MEM
0x08000000 to 0x08000400 EEPROM

The output sections are constructed in the following manner:

Executable code, contained in the .text sections of demo.obj, fft.obj, and tables.obj, is linked into
program memory ROM.

Variables, contained in the var_defs section of demo.obj, are linked into data memory in block
FAST_MEM_2.

Tables of coefficients in the .data sections of demo.obj, tables.obj, and fft.obj are linked into
FAST_MEM_1. A hole is created with a length of 100 and a fill value of 0x07A1C.

The xy section form demo.obj, which contains buffers and variables, is linked by default into page 1 of
the block STACK, since it is not explicitly linked.

Executable code, contained in the .text sections of demo.obj, ctrl.obj, and tables.obj, must be linked
into FAST_MEM.

A table of coefficients, contained in the .data section of tables.obj, must be linked into EEPROM. The
remainder of block FLASH must be initialized to the value OxFFOOFFOO.

A set of variables, contained in the .bss section of ctrl.obj, must be linked into SLOW_MEM and
preinitialized to 0x00000100.

The .bss sections of demo.obj and tables.obj must be linked into SLOW_MEM.

234

Linker Description SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com

Linker Example

Example 8-22 shows the linker command file for this example. Example 8-23 shows the map file.

Example 8-22. Linker Command File, demo.cmd

/ /
V fakaiad Specify Link Options siaioV 4
/ /
--entry_point SETUP /* Define the program entry point */
--output_Tfile=demo.out /* Name the output file */
--map_TFile=demo.map /* Create an output map Ffile */
/ /
V fakaiad Specify the Input Files siaioV 4
/ /
demo.obj
ctrl.obj
tables.obj
/ /
V fakaiad Specify the Memory Configurations siaioV 4
/ /
MEMORY
FAST_MEM : org = 0x00000000 len = 0x00001000 /* PROGRAM MEMORY (ROM) */
SLOW_MEM : org = 0x00001000 len = 0x00001000 /* DATA MEMORY (RAV) */
EEPROM : org = 0x08000000 len = 0x00000400 /* COEFFICIENTS (EEPROM) */
b
/ /
/* Specify the Output Sections */
/ /
SECTIONS
{
-text : {3 > FAST_MEM /* Link all .text sections into ROM */
.data : /* Link _data sections */
{
tables.obj(.data)
. = 0x400; /* Create hole at end of block */
} > EEPROM, fill = OxFFOOFFOO /* Fill and link into EEPROM */
ctrl_vars: /* Create sections for ctrl variables */
{
ctrl.obj(.bss)
} > SLOW_MEM, fill = 0x00000100 /* Fill with 0x100 and link into RAM */
-bss : {3 > SLOW_MEM /* Link remaining .bss sections into RAM */
}
/ /
[*** End of Command File xxxf
/ /

Invoke the linker by entering the following command:

clpru --run_linker demo.cmd

This creates the map file shown in Example 8-23 and an output file called demo.out that can be run on a

PRU device.

SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyri

ght © 2014-2018, Texas Instruments Incorporated

Linker Description

235

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

Linker Example

13 TEXAS
INSTRUMENTS

www.ti.com

Example 8-23. Output Map File, demo.map

OUTPUT FILE NAME: <demo.out>

attributes/
input sections

ctrl.obj (.text)
tables.obj (.text)
demo.obj (-text)

tables.obj (.data)
--HOLE-- [fill = ffOOffO0]
(-data)

(-data)

ctrl._obj
demo.obj

ctrl.obj (-bss) [Ffill = 00000100]

UNINITIALIZED
demo.obj (-bss)

ENTRY POINT SYMBOL: "SETUP" address: 000000d4
MEMORY CONFIGURATION
name origin length
FAST_MEM 00000000 000001000
SLOW_MEM 00001000 000001000
EEPROM 08000000 000000400
SECTION ALLOCATION MAP
output
section page origin length
-text 0 00000020 00000138
00000020 000000a0
000000c0 00000000
000000c0 00000098
.data 0 08000000 00000400
08000000 00000168
08000168 00000298
08000400 00000000
08000400 00000000
ctrl_var O 00001000 00000500
00001000 00000500
-bss 0 00001500 00000100
00001500 00000100
00001600 00000000

GLOBAL SYMBOLS
address name
000000d4 SETUP
00000020 clear
000000b8 set
000000c0 x42

[4 symbols]

tables.obj (.bss)

address name
00000020 clear
000000b8 set
000000c0 x42
000000d4 SETUP

236 Linker Description

SPRUHV6C-July 2014—-Revised July 2018
Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

Chapter 9
I ’.{‘IE)S(’?SUMENTS SPRUHV6C—July 2014—Revised July 2018

Absolute Lister Description

The PRU absolute lister is a debugging tool that accepts linked object files as input and creates .abs files
as output. These .abs files can be assembled to produce a listing that shows the absolute addresses of
object code. Manually, this could be a tedious process requiring many operations; however, the absolute
lister utility performs these operations automatically.

Topic Page

9.1 Producing an ADSOIULE LiStiNg ...ueuiuieeieieiiieieee et e e et e e eeeeeeaes 238

9.2 INVOKING the ADSOIULE LISTEr ...cueeiiiee ettt e e e e e eeees 239

9.3 ADSOlUte LisSter EXamPle uoueuiiiiiiiiii e e 240
SPRUHV6C-July 2014—-Revised July 2018 Absolute Lister Description 237

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

Producing an Absolute Listing

13 TEXAS
INSTRUMENTS

www.ti.com

9.1 Producing an Absolute Listing
Figure 9-1 illustrates the steps required to produce an absolute listing.
Figure 9-1. Absolute Lister Development Flow
Step 1: Assembler First, assemble a source file.
source file
Assembler
_______ Object o o o]
file
Step 2 Link the resulting object file.
Linker
238 Absolute Lister Description SPRUHV6C—-July 2014 —Revised July 2018

Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Invoking the Absolute Lister

9.2 Invoking the Absolute Lister

The syntax for invoking the absolute lister is:

‘ abspru [-options] input file

abspru is the command that invokes the absolute lister.

options identifies the absolute lister options that you want to use. Options are not case sensitive
and can appear anywhere on the command line following the command. Precede each
option with a hyphen (-). The absolute lister options are as follows:

-e enables you to change the default naming conventions for filename extensions on
assembly files, C source files, and C header files. The valid options are:

» ea [.]Jasmext for assembly files (default is .asm)

e ec [.Jeext for C source files (default is .c)

» eh [.]Jhext for C header files (default is .h)

* ep [.]Jpext for CPP source files (default is cpp)

The . in the extensions and the space between the option and the extension are

optional.
-q (quiet) suppresses the banner and all progress information.
input file names the linked object file. If you do not supply an extension, the absolute lister

assumes that the input file has the default extension .out. If you do not supply an input
filename when you invoke the absolute lister, the absolute lister prompts you for one.

The absolute lister produces an output file for each file that was linked. These files are named with the
input filenames and an extension of .abs. Header files, however, do not generate a corresponding .abs
file.

Assemble these files with the --absolute_listing assembler option as follows to create the absolute listing:
clpru --absolute_listing filename .abs

The -e options affect both the interpretation of filenames on the command line and the names of the
output files. They should always precede any filename on the command line.

The -e options are useful when the linked object file was created from C files compiled with the debugging
option (--symdebug:dwarf compiler option). When the debugging option is set, the resulting linked object
file contains the name of the source files used to build it. In this case, the absolute lister does not generate
a corresponding .abs file for the C header files. Also, the .abs file corresponding to a C source file uses
the assembly file generated from the C source file rather than the C source file itself.

For example, suppose the C source file hello.csr is compiled with the debugging option set; the debugging
option generates the assembly file hello.s. The hello.csr file includes hello.hsr. Assuming the executable
file created is called hello.out, the following command generates the proper .abs file:

abspru -ea s -ec csr -eh hsr hello.out

An .abs file is not created for hello.hsr (the header file), and hello.abs includes the assembly file hello.s,
not the C source file hello.csr.

SPRUHV6C-July 2014—-Revised July 2018 Absolute Lister Description 239

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Absolute Lister Example www.ti.com

9.3 Absolute Lister Example

This example uses three source files. The files modulel.asm and module2.asm both include the file
globals.def.

modulel.asm
.text

-bss dflag, 1
.bss array, 100

.copy globals.def

LDI r4, array
LDI r5, offst
LDI r3, dflag
LBBO &r0, r4, r5, 4
SBBO &r0, r3, O, 4

module2.asm

.text
.bss offst, 1

.copy globals.def
LDI r4, offst
SBBO &r0O, r4, 0, 4

globals.def

-global array
-global offst
-global dflag

The following steps create absolute listings for the files modulel.asm and module2.asm:

Step 1: First, assemble modulel.asm and module2.asm:
clpru modulel
clpru module2

This creates two object files called modulel.obj and module2.obj.

Step 2: Next, link modulel.obj and module2.obj using the following linker command file, called
bttest.cmd:

modulel.obj
module2.obj

--unused_section_elimination=off
--output_file=bttest.out

MEMORY

{
PAGE O:

P_MEM : org = 0x00000008 len = Ox0003FFF8

PAGE 1:
D_MEM : org = 0x00000008 len = OxO000FFF8
}

/* SPECIFY THE SECTIONS ALLOCATION INTO MEMORY */

SECTIONS
{
.data : {3 > D_MEM, PAGE 1
-bss : {3 > D_MEM, PAGE 1
-text : {3 > P_MEM, PAGE O
}
240 Absolute Lister Description SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Absolute Lister Example

Invoke the linker:
clpru --run_linker bttest.cmd

This command creates an executable object file called bttest.out; use this file as input for the
absolute lister.

Step 3: Now, invoke the absolute lister:
abspru bttest.out

This command creates two files called modulel.abs and module2.abs:

modulel.abs:

.compiler_opts_source "modulel.asm™

-nolist

array .setsym 000000009h

dflag .setsym 000000008h

offst -setsym 00000006dh
.setsect "' _text",000000008h
.setsect "' _bss',000000008h
.setsect "' .debug_info",000000000h
.setsect **.debug_line',000000000h
-list
-text
.copy “modulel.asm"

module2.abs:

-compiler_opts_source "module2._.asm™

-nolist

array -setsym 000000009h

dflag .setsym 000000008h

offst .setsym 00000006dh
.setsect " _text",00000001ch
.setsect " .bss',00000006dh
.setsect " .debug_info',0000000c0Oh
.setsect " .debug_line'",00000003eh
.setsect " .debug_aranges',000000000h
.setsect " _.debug_pubnames™,000000000h
-list
-text
.copy “module2.asm"

These files contain the following information that the assembler needs for Step 4:

e They contain .setsym directives, which equate values to global symbols. Both files contain
global equates for the symbol dflag. The symbol dflag was defined in the file globals.def,
which was included in modulel.asm and module2.asm.

» They contain .setsect directives, which define the absolute addresses for sections.

< They contain .copy directives, which defines the assembly language source file to include.
The .setsym and .setsect directives are useful only for creating absolute listings, not normal
assembly.

Step 4: Finally, assemble the .abs files created by the absolute lister (remember that you must use
the --absolute_listing option when you invoke the assembler):
clpru --absolute_listing modulel.abs
clpru --absolute_listing module2.abs
This command sequence creates two listing files called modulel.Ist and module2.Ist; no
object code is produced. These listing files are similar to normal listing files; however, the
addresses shown are absolute addresses.

The absolute listing files created are modulel.Ist (see Example 9-1) and module2.Ist (see
Example 9-2).

SPRUHV6C-July 2014—-Revised July 2018 Absolute Lister Description 241

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

Absolute Lister Example

13 TEXAS
INSTRUMENTS

www.ti.com

Example 9-1. modulel.Ist

PRU Assembler Unix v2.1.0 Thu Jun 26 21:23:57 2014

Tools Copyright (c) 2012-2014 Texas Instruments Incorporated

modulel.asm PAGE 1
1 00000000 -text
2 00000000 .bss dflag, 1
3 00000001 -bss array, 100
4
5 .copy globals.def
A 1 -global array
A 2 -global offst
A 3 -global dflag
6
7 00000000 000000240000E4! LDl r4, array
8 00000004 000000240000E5! LDI r5, offst
9 00000008 000000240000E3! LDI r3, dflag
10 0000000c 000000FOE52480 LBBO &r0, r4, r5, 4
11 00000010 OOOO00E1002380 SBBO &r0, r3, 0, 4
12
No Assembly Errors, No Assembly Warnings
Example 9-2. module2.Ist
PRU Assembler Unix v2.1.0 Thu Jun 26 21:24:22 2014
Tools Copyright (c) 2012-2014 Texas Instruments Incorporated
module2.asm PAGE 1
1 00000000 -text
2 00000000 -bss offst, 1
3
4 .copy globals.def
A 1 -global array
A 2 -global offst
A 3 -global dflag
5 00000000 000000240000E4! LDl r4, offst
6 00000004 000000E1002480 SBBO &r0, r4, 0, 4

No Assembly Errors, No Assembly Warnings

242 Absolute Lister Description

Copyright © 2014-2018, Texas Instruments Incorporated

SPRUHV6C-July 2014—-Revised July 2018
Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

Chapter 10
I -{IE)S(’?I?UMENTS SPRUHV6C—July 2014—Revised July 2018

Cross-Reference Lister Description

The PRU cross-reference lister is a debugging tool. This utility accepts linked object files as input and
produces a cross-reference listing as output. This listing shows symbols, their definitions, and their
references in the linked source files.

Topic

Page

10.1 Producing a Cross-Reference LiStiNg......cocueuieieiiiiiiiiieiiieieieeeie e e reeeeaenns 244

10.2 Invoking the CroSS-ReferenCe LiSteriuviiuieieiiieiiiiiiii i eeaes 245

10.3 Cross-Reference Listing EXampPle......oviiiiniiiiiiieiei et eeeae e e e eeenns 246
SPRUHV6C-July 2014—-Revised July 2018 Cross-Reference Lister Description 243

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS

INSTRUMENTS
Producing a Cross-Reference Listing www.ti.com
10.1 Producing a Cross-Reference Listing
Figure 10-1 illustrates the steps required to produce a cross-reference listing.
Figure 10-1. The Cross-Reference Lister Development Flow
)
Step 1: Assembler First, invoke the assembler with the compiler
source file --cross_reference option. This produces
T a cross-reference table in the listing file and
adds to the object file cross-reference infor-
Assembler mation. By default, only global symbols are
cross-referenced. If you use the compiler
--output_all_syms option, local symbols are
- cross-referenced as well.
_______ Object -
file
Step 2: Link the object file (.obj) to obtain an
executable object file (.out).
Linker
Linked object
file
Invoke the cross-reference lister. The
following section provides the command
Cross-reference | syntax for invoking the cross-reference lister
lister utility.
Cross-reference
listing
244 Cross-Reference Lister Description SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Invoking the Cross-Reference Lister

10.2 Invoking the Cross-Reference Lister

To use the cross-reference utility, the file must be assembled with the correct options and then linked into
an executable file. Assemble the assembly language files with the --cross_reference option. This option
creates a cross-reference listing and adds cross-reference information to the object file. By default, the
assembler cross-references only global symbols, but if the assembiler is invoked with the --
output_all_syms option, local symbols are also added. Link the object files to obtain an executable file.

To invoke the cross-reference lister, enter the following:

‘xrefpru [options] [input filename [output filename]]

xrefpru is the command that invokes the cross-reference utility.
options identifies the cross-reference lister options you want to use. Options are not case
sensitive and can appear anywhere on the command line following the command.

-l (lowercase L) specifies the number of lines per page for the output file. The format
of the -l option is -Inum, where num is a decimal constant. For example, -130 sets
the number of lines per page in the output file to 30. The space between the
option and the decimal constant is optional. The default is 60 lines per page.

-q suppresses the banner and all progress information (run quiet).

input filename s a linked object file. If you omit the input filename, the utility prompts for a filename.

output filename is the name of the cross-reference listing file. If you omit the output filename, the default
filename is the input filename with an .xrf extension.

SPRUHV6C-July 2014—-Revised July 2018 Cross-Reference Lister Description 245

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Cross-Reference Listing Example www.ti.com

10.3 Cross-Reference Listing Example

These terms defined appear in the cross-reference listing in Example 10-1:

Symb

ol

Filename

RTYP

AsmVal

LnkVal

DefLn
RefLn

Name of the symbol listed

Name of the file where the symbol appears

The symbol's reference type in this file. The possible reference types are:
STAT The symbol is defined in this file and is not declared as global.
EDEF The symbol is defined in this file and is declared as global.

EREF The symbol is not defined in this file but is referenced as global.
UNDF The symbol is not defined in this file and is not declared as global.

This hexadecimal number is the value assigned to the symbol at assembly time. A
value may also be preceded by a character that describes the symbol's attributes.
Table 10-1 lists these characters and names.

This hexadecimal number is the value assigned to the symbol after linking.
The statement number where the symbol is defined.

The line number where the symbol is referenced. If the line number is followed by an
asterisk (*), then that reference can modify the contents of the object. A blank in this
column indicates that the symbol was never used.

Table 10-1. Symbol Attributes in Cross-Reference Listing

Character Meaning

Symbol defined in a .text section
Symbol defined in a .data section
+ Symbol defined in a .sect section
- Symbol defined in a .bss or .usect section

Example 10-1 is an example of cross-reference listing.

Example 10-1. Cross-Reference Listing

File: bttest.out Wed Nov 13 17:07:42 XXXX Page: 1

Symbol: array

Filename RTYP AsmVval Lnkval DefLn RefLn RefLn RefLn
modulel.asm EDEF -00000001 00001001 3 1A 5
Symbol: array_a
Filename RTYP AsmVal LnkVval DeflLn RefLn ReflLn ReflLn
modulel.asm STAT "00000004 00000004 5 9
Symbol: dflag
Filename RTYP AsmVal Lnkval DefLn RefLn RefLn RefLn
modulel.asm EDEF -00000000 00001000 2 3A 4
Symbol: dflag_a
Filename RTYP AsmVal Lnkval DeflLn RefLn RefLn RefLn
modulel.asm STAT "00000000 00000000 4 11
Symbol: offst
Filename RTYP AsmVal LnkVval DeflLn ReflLn ReflLn ReflLn
modulel.asm EREF 00000000 00001068 2A 6

246 Cross-Reference Lister Description SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Cross-Reference Listing Example

Example 10-1. Cross-Reference Listing (continued)

modulle2_asm EDEF -00000000 00001068 2 2A 3

Symbol: offst_a

Filename RTYP AsmVal Lnkval DeflLn ReflLn ReflLn RefLn
modullel._asm STAT "00000008 00000008 6 10
module2_asm STAT "00000000 00000020 3 6
SPRUHV6C-July 2014—-Revised July 2018 Cross-Reference Lister Description 247

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

I3 TEXAS
INSTRUMENTS

Chapter 11

Object File Utilities

This chapter describes how to invoke the following utilities:

* The object file display utility prints the contents of object files, executable files, and/or archive
libraries in both text and XML formats.

» The disassembler accepts object files and executable files as input and produces an assembly listing
as output. This listing shows assembly instructions, their opcodes, and the section program counter
values.

» The name utility prints a list of names defined and referenced in an object file, executable files, and/or

archive libraries.
» The strip utility removes symbol table and debugging information from object and executable files.

Topic

111
11.2
11.3
114

Page

Invoking the Object File Display ULilityccuveieieieiiii e e e 249
Invoking the DiSasSembBIEr ... et e e e e e aas 250
INVOKING the Name ULHITYoeeeie et e ettt e e e e e a e neaes 252
INVOKING the SEriP ULty cueueeieieii i e et eeaeae e e e e e aeaaaas 253

248

Object File Utilities

Copyright © 2014-2018, Texas Instruments Incorporated

SPRUHV6C-July 2014—Revised July 2018

SPRUHV6C-July 2014—-Revised July 2018
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com

Invoking the Object File Display Utility

11.1 Invoking the Object File Display Utility

The object file display utility, ofdpru, prints the contents of object files (.obj), executable files (.out), and/or

archive libraries (.lib) in both text and XML form
symbols are listed like any other local symbol.

To invoke the object file display utility, enter the

ats. Hidden symbols are listed as no name, while localized

following:

’ofdpru [options] input filename [input filename]

ofdpru is the command that invokes

the object file display utility.

input filename names the object file (.obj), executable file (.out), or archive library (.lib) source file.
The filename must contain an extension.

options identify the object file display utility options that you want to use. Options are not case
sensitive and can appear anywhere on the command line following the command.
Precede each option with a hyphen.

_Cg

--dwarf_display=attributes

--dynamic_info
-g

-h

-o=filename

--obj_display attributes

-V
-X
--xml_indent=num

Prints function stack usage and callee information in XML
format. While the XML output may be accessed by a
developer, this option was primarily designed to be used
by tools such as Code Composer Studio to display an
application’s worst case stack usage.

Controls the DWARF display filter settings by specifying a
comma-delimited list of attributes. When prefixed with no,
an attribute is disabled instead of enabled.

Examples: --dwarf_display=nodabbrev,nodline
--dwarf_display=all,nodabbrev
--dwarf_display=none,dinfo,types

The ordering of attributes is important (see --obj_display).

The list of available display attributes can be obtained by

invoking ofdpru --dwarf_display=help.

Outputs dynamic linking information.

Appends DWARF debug information to program output.

Displays help

Sends program output to filename rather than to the

screen.

Controls the object file display filter settings by specifying
a comma-delimited list of attributes. When prefixed with
no, an attribute is disabled instead of enabled.

Examples: --obj_display=rawdata,nostrings
--0bj_display=all,norawdata
--obj_display=none,header

The ordering of attributes is important. For instance, in "--

obj_display=none,header", ofdpru disables all output, then

re-enables file header information. If the attributes are
specified in the reverse order, (header,none), the file
header is enabled, the all output is disabled, including the
file header. Thus, nothing is printed to the screen for the
given files. The list of available display attributes can be
obtained by invoking ofdpru --obj_display=help.

Prints verbose text output.

Displays output in XML format.

Sets the number of spaces to indent nested XML tags.

SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018,

Object File Utilities 249

Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

Invoking the Disassembler

13 TEXAS
INSTRUMENTS

www.ti.com

11.2

If an archive file is given as input to the object file display utility, each object file member of the archive is
processed as if it was passed on the command line. The object file members are processed in the order in
which they appear in the archive file.

If the object file display utility is invoked without any options, it displays information about the contents of
the input files on the console screen.

Object File Display Format

NOTE: The object file display utility produces data in a text format by default. This data is not
intended to be used as input to programs for further processing of the information. XML
format should be used for mechanical processing.

Invoking the Disassembler

The disassembler, dispru, examines the output of the assembler or linker. This utility accepts an object file
or executable file as input and writes the disassembled object code to standard output or a specified file.

To invoke the disassembler, enter the following:

‘dispru [options] input filename][.] [output filename]

dispru
options

input
filename[.ext]

output filename

is the command that invokes the disassembler.

identifies the name utility options you want to use. Options are not case sensitive and
can appear anywhere on the command line following the invocation. Precede each
option with a hyphen (-). The name utility options are as follows:

-1 disassembles all sections, processes .cinit sections
-a disables printing of address along with label names within instructions.
-b displays data as bytes instead of words.
-d disables display of data sections.
-e displays integer values in hexadecimal.
-h shows the current help screen.
-i disassembles data sections as text.
-1 disassembles text sections as data.
-q (quiet mode) suppresses the banner and all progress information.
-qq (super quiet mode) suppresses all headers.
-S suppresses printing of address and data words.
-t suppresses the display of text sections in the listing.

-y (aliased as --copy_talbes) displays copy tables and the sections copied. The
table information is dumped first, then each record followed by its load and run
data.

is the name of the input file. If the optional extension is not specified, the file is
searched for in this order:

1. infile

2. infile.out, an executable file

3. infile.obj, an object file

is the name of the optional output file to which the disassembly will be written. If an
output filename is not specified, the disassembly is written to standard output.

250

Object File Utilities

SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS

INSTRUMENTS

www.ti.com

Invoking the Disassembler

As shown in Example 11-1, the disassembler can produce disassembly from an object file, in this case

memcpy32.obj. The first two lines are entered on the command line.

Example 11-1. Disassembly From memcpy32.asm

TEXT Section .text, 0x180 bytes at O0x0

000000:

000000:

000004:

000008:

00000c:

000010:

000014:

000018:

00001c:

000020:

000024:

000028:

E3520000

012FFF1E

E92D4001

E3110003

1A00002B

E3100003

1A00002F

E3520010

3A000008

E92D0010

E2422010

C_MEMCPY:
cwP
BXEQ
STMFD
TST
BNE
TST
BNE
cMP
BCC
STMFD

SuUB

R2, 0
R14

R131, {RO, R14}
R1, 3
0x000000C4

RO, 3
0x000000DC

R2, 16
0x00000048
R131, {R4}

R2, R2, 16

SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

Object File Utilities

251

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

Invoking the Disassembler

13 TEXAS
INSTRUMENTS

www.ti.com

Example 11-2 provides an example of how the output would appear if a copy record refers to different
load and run sections and the --copy_table option is used.

Example 11-2. Partial Copy Record Output With Different Load and Run Address

11.3

COPY TABLE: _data2_ctbl, 0x30 at Ox5E10, 1 record(s)

_data2_ctbl[0]:

load addr=0x200158, size=0x12B, encoding=1zss

DATA Section .data2_scn.load, 0x12B bytes at 0x200158

200158:
200158: 0200000
20015c: beef0003

$d:

-word 0x020f0000
-word Oxbeef0003

_data2_ctbI[0]: run addr=0x52A0, size=0x960

DATA Section .datal_scn, 0x960 bytes at 0x52A0

0052a0:
0052a0:
0052a0:
0052a0: 0000beef
0052a4: 0000beef

datal:

$d:

.datal_scn:

-word 0x0000beef
-word 0x0000beef

Invoking the Name Utility

The name utility, nmpru, prints the list of names defined and referenced in an object file, executable file, or
archive library. It also prints the symbol value and an indication of the kind of symbol. Hidden symbols are

listed as "'.

To invoke the name utility, enter the following:

‘ nmpru [-options] [input filenames]

nmpru
input filename
options

is the command that invokes the name utility.
is an object file (.obj), executable file (.out), or archive library (.lib).

identifies the name utility options you want to use. Options are not case sensitive and
can appear anywhere on the command line following the invocation. Precede each
option with a hyphen (-). The name utility options are as follows:

prints all symbols.

prepends file name to each symbol.

prints only global symbols.

shows the current help screen.

produces a detailed listing of the symbol information.

sorts symbols numerically rather than alphabetically.

outputs to the given file.

causes the name utility to not sort any symbols.

(quiet mode) suppresses the banner and all progress information.
sorts symbols in reverse order.

lists symbols in the dynamic symbol table for an ELF object module.
only prints undefined symbols.

252

Object File Utilities

SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Invoking the Strip Utility
11.4 Invoking the Strip Utility

The strip utility, strippru, removes symbol table and debugging information from object and executable
files.

To invoke the strip utility, enter the following:

strippru [-p] input filename [input filename]

strippru is the command that invokes the strip utility.
input filename is an object file (.obj) or an executable file (.out).
options identifies the strip utility options you want to use. Options are not case sensitive and can

appear anywhere on the command line following the invocation. Precede each option
with a hyphen (-). The strip utility option is as follows:

-0 filename writes the stripped output to filename.
-p removes all information not required for execution. This option causes more
information to be removed than the default behavior, but the object file is

left in a state that cannot be linked. This option should be used only with
executable (.out) files.

When the strip utility is invoked without the -0 option, the input object files are replaced with the stripped
version.

SPRUHV6C-July 2014—-Revised July 2018 Object File Utilities 253
Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

[Chapter 12
I TEXAS SPRUHV6C-July 2014—Revised July 2018

INSTRUMENTS
Hex Conversion Utility Description

The PRU assembler and linker create object files which are in binary formats that encourage modular
programming and provide powerful and flexible methods for managing code segments and target system
memory.

Most EPROM programmers do not accept object files as input. The hex conversion utility converts an
object file into one of several standard ASCIl hexadecimal formats, suitable for loading into an EPROM
programmer. The utility is also useful in other applications requiring hexadecimal conversion of an object
file (for example, when using debuggers and loaders).

The hex conversion utility can produce these output file formats:

» ASCII-Hex, supporting 16-bit addresses

» Extended Tektronix (Tektronix)

* Intel MCS-86 (Intel)

* Motorola Exorciser (Motorola-S), supporting 16-bit addresses

e Texas Instruments SDSMAC (TI-Tagged), supporting 16-bit addresses

e Texas Instruments TI-TXT format, supporting 16-bit addresses

o C arrays
Topic Page
12.1 The Hex Conversion Utility's Role in the Software Development FIOW 255
12.2 Invoking the Hex Conversion ULHITYcoceuinieiiieicieii e e e ee e eeeeaenes 256
12.3 Linking with an ARM EXeCULabIe ... e 259
12.4 Understanding Memory WIdths ... 259
12.5 The ROMS DirCHIVE . cuutuiuiuitieeitiei ettt et e e e e s e e e e e r e e n s e e e e e 263
12.6 The SECTIONS DIl€CHIVE t.uvuiuiiuitiiuieiniiinitis st eis e sa e ees s e es e ens e easaaenns 266
12.7 The Load Image Format (--load_image Option)......cccoeeuieieieieiiieei e eenenenes 267
12.8 Excluding a Specified SECHIONui ittt e e e e e enens 268
12.9 Assigning OULPUL FilENAMES et et et e e e e e e e e eaas 268
12.10 Image Mode and the --fill OPLiON ... e e 269
12,11 Array OULPUL FOIMAL ... eeeieeieitiieeeeesee et eeae s s et san e aaeaneansaneaneaansansanssneannsansanes 270
12.12 Controlling the ROM DeViCe AQOrESS . ..cuuitiriniiiiiititiiiieaeaeetiaensaeneaeaeiaeaaaneaenees 271
12.13 Control Hex Conversion Utility DiagnNOStiCS «.cucuuueeeienenieieneeeenanreeeeneenennnenes 272
12.14 Description of the ODJECt FOIMALS ... cuiuiuinieieiiieice et e e ee e e e eeeaenns 273
254 Hex Conversion Utility Description SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com The Hex Conversion Utility's Role in the Software Development Flow

12.1 The Hex Conversion Utility's Role in the Software Development Flow
Figure 12-1 highlights the role of the hex conversion utility in the software development process.

Figure 12-1. The Hex Conversion Utility in the PRU Software Development Flow

C/C++
source
files
L L
Macro
source CiC++
files compiler
h
CIC++ name
Assembler demangling
sSOurce l.lti"'l}l"
:\iﬁg‘z Assembler
Object Libratr‘T-tbuild Debugging
files urity
I L
H Run-time-
Library of support
object library
files

Executable
object file

Hex-conversion

utility

EPROM

Cross-reference Object file
programmer lister utilities

Absolute lister

SPRUHV6C—-July 2014—Revised July 2018 Hex Conversion Utility Description 255

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

Invoking the Hex Conversion Utility

13 TEXAS
INSTRUMENTS

www.ti.com

12.2 Invoking the Hex Conversion Utility

There are two basic methods for invoking the hex conversion utility:
» Specify the options and filenames on the command line. The following example converts the file

firmware.out into TI-Tagged format, producing two output files, firm.Isb and firm.msb.

hexpru -t firmware -o firm.Isb -o firm.msb

» Specify the options and filenames in a command file. You can create a file that stores command
line options and filenames for invoking the hex conversion utility. The following example invokes the
utility using a command file called hexutil.cmd:

hexpru hexutil.cmd

In addition to regular command line information, you can use the hex conversion utility ROMS and
SECTIONS directives in a command file.

12.2.1 Invoking the Hex Conversion Utility From the Command Line

To invoke the hex conversion utility, enter:

‘ hexpru [options] filename

hexpru is the command that invokes the hex conversion utility.

options supplies additional information that controls the hex conversion process. You can use
options on the command line or in a command file. Table 12-1 lists the basic options.

« All options are preceded by a hyphen and are not case sensitive.

e Several options have an additional parameter that must be separated from the option
by at least one space.

e Options with multi-character names must be spelled exactly as shown in this
document; no abbreviations are allowed.

« Options are not affected by the order in which they are used. The exception to this rule
is the --quiet option, which must be used before any other options.

filename names an object file or a command file (for more information, see Section 12.2.2).

Table 12-1. Basic Hex Conversion Utility Options

Option Alias Description See
General Options
--e);ﬂ:?neez}{fname(sname) | —exclude Isfntgr?qglsvri]l?g]:é]:l?ﬁ?cﬂs omitted, all sections matching Section 12.8
--fill=value fill Fill holes with value Section 12.10.2
Display the syntax for invoking the utility and list available
--help -options, -h options. If the option is followed by another option or phrase, Section 12.2.2
detailed information about that option or phrase is displayed.
--image -image Select image mode Section 12.10.1
--linkerfill -linkerfill Include linker fill sections in images -
--map=filename -map Generate a map file Section 12.5.2
--memwidth=value -memwidth Define the system memory word width (default bits) Section 12.4.2
--outfile=filename -0 Specify an output filename Section 12.9
--quiet -q Run quietly (when used, it must appear before other options) Section 12.2.2
Specify the ROM device width (default depends on format
--romwidth=value -romwidth used). This option is ignored for the TI-TXT and TI-Tagged Section 12.4.3
formats.
--zero -zero, -z Reset the address origin to 0 in image mode Section 12.10.3

256 Hex Conversion Utility Description

SPRUHV6C-July 2014—-Revised July 2018
Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

I

TEXAS

INSTRUMENTS

www.ti.com

Invoking the Hex Conversion Utility

Table 12-1. Basic Hex Conversion Utility Options (continued)

Option Alias Description See
Diagnostic Options
--diag_error=id Categorizes the diagnostic identified by id as an error Section 12.13
--diag_remark=id Categorizes the diagnostic identified by id as a remark Section 12.13
--diag_suppress=id Suppresses the diagnostic identified by id Section 12.13
--diag_warning=id Categorizes the diagnostic identified by id as a warning Section 12.13
--display_error_number Displays a diagnostic's identifiers along with its text Section 12.13
--issue_remarks Issues remarks (nonserious warnings) Section 12.13
--no_warnings Suppresses warning diagnostics (errors are still issued) Section 12.13
~set_error_imit=count this number of orors. (The default 15 100y 0 Section 12.13
Output Options
--array Select array output format Section 12.11
--ascii -a Select ASCII-Hex Section 12.14.1
--intel -i Select Intel Section 12.14.2
--motorola=1 -ml Select Motorola-S1 Section 12.14.3
--motorola=2 -m2 Select Motorola-S2 Section 12.14.3
--motorola=3 -m3 Select Motorola-S3 (default -m option) Section 12.14.3
—tektronix x sséi(i}ti;e;ktronix (default format when no output option is Section 12.14.4
--ti_tagged -t Select TI-Tagged Section 12.14.5
-ti_txt Select TI-Txt Section 12.14.6
Load Image Options
--load_image Select load image Section 12.7
--section_name_prefix=string Specify the section name prefix for load image object files Section 12.7

SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

Hex Conversion Utility Description

257

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Invoking the Hex Conversion Utility www.ti.com

12.2.2 Invoking the Hex Conversion Utility With a Command File

A command file is useful if you plan to invoke the utility more than once with the same input files and
options. It is also useful if you want to use the ROMS and SECTIONS hex conversion utility directives to
customize the conversion process.

Command files are ASCII files that contain one or more of the following:

e Options and filenames. These are specified in a command file in exactly the same manner as on the
command line.

 ROMS directive. The ROMS directive defines the physical memory configuration of your system as a
list of address-range parameters. (See Section 12.5.)

» SECTIONS directive. The hex conversion utility SECTIONS directive specifies which sections from the
object file are selected. (See Section 12.6.)

e Comments. You can add comments to your command file by using the /* and */ delimiters. For
example:
/* This is a comment. */

To invoke the utility and use the options you defined in a command file, enter:

hexpru command_filename

You can also specify other options and files on the command line. For example, you could invoke the
utility by using both a command file and command line options:

hexpru firmware.cmd --map=Firmware.mxp

The order in which these options and filenames appear is not important. The utility reads all input from the

command line and all information from the command file before starting the conversion process. However,
if you are using the -g option, it must appear as the first option on the command line or in a command file.

The --help option displays the syntax for invoking the compiler and lists available options. If the --help
option is followed by another option or phrase, detailed information about the option or phrase is
displayed. For example, to see information about options associated with generating a boot table use --
help boot.

The --quiet option suppresses the hex conversion utility's normal banner and progress information.

* Assume that a command file named firmware.cmd contains these lines:

firmware.out /* input file */
--ti-tagged /* Tl-Tagged */
—-outfile=firm.Isb /* output file */
--outfile=firm.msb /* output file */
You can invoke the hex conversion utility by entering:

hexpru firmware.cmd

» This example shows how to convert a file called appl.out into eight hex files in Intel format. Each output
file is one byte wide and 4K bytes long.

appl.out /* input file */
--intel /* Intel format */
--map=appl -mxp /* map file */
ROMS

{

ROW1: origin=0x00000000 1en=0x4000 romwidth=8
Files={ appl.u0 appl.ul appl.u2 appl.u3 }

ROW2: origin=0x00004000 1en=0x4000 romwidth=8
Ffiles={ appl.u4 appl.u5 appl.u6 appl.u7 }

}
SECTIONS
{ .text, .data, .cinit, .sectl, .const:
}
258 Hex Conversion Utility Description SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

I

www.ti.com

TEXAS
INSTRUMENTS

Linking with an ARM Executable

12.3

12.4

12.4.

Linking with an ARM Executable

The hexpru tool can be used to convert a PRU executable into an ARM object file that can be linked in
with an ARM project. The PRU code and data are converted to ARM data. The ARM application can

reference symbols in the PRU file. This is useful for bare metal projects that are not running a high level

operating system like Linux.

The files for this example are provided in the PRU compiler's "example" directory. The resulting
executable exposes the shared_buf and local_data symbols.

clpru -o3 test.c -z AM3359_PRU.cmd -0 pru.out

To convert the executable to an ARM object file, use the PRU_to_ ARM.cmd file as follows:
hexpru pru.out -o pru.obj PRU_to_ARM.cmd

The resulting pru.obj file can be linked with the dummy ARM application as follows:
armcl arm.c pruO.obj -z dummy_ARM.cmd -o arm.out

Understanding Memory Widths

The hex conversion utility makes your memory architecture more flexible by allowing you to specify
memory and ROM widths. To use the hex conversion utility, you must understand how the utility treats
word widths. Three widths are important in the conversion process:

» Target width
* Memory width
* ROM width

The terms target word, memory word, and ROM word refer to a word of such a width.
Figure 12-2 illustrates the separate and distinct phases of the hex conversion utility's process flow.

Figure 12-2. Hex Conversion Utility Process Flow
Raw data in object files is
/ represented in the target’s
addressable units. For the
(inputiile) ARM device, this is 32 bits.

The raw data in the object file
is grouped into words according
Phase | to the size specified by the
--memwidth option.

The memwidth-sized words are
broken up according to the size
specified by the --romwidth option
and are written to a file(s)
according to the specified format
(i.e., Intel, Tektronix, etc.).

Phase I

(Output file(s))

1 Target Width

Target width is the unit size (in bits) of the target processor's word. The width is fixed for each target and

cannot be changed. The PRU targets have a width of 32 bits.

SPRUHV6C-July 2014—-Revised July 2018 Hex Conversion Utility Description
Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

259

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

Understanding Memory Widths

13 TEXAS
INSTRUMENTS

www.ti.com

12.4.2 Specifying the Memory Width

Memory width is the physical width (in bits) of the memory system. Usually, the memory system is
physically the same width as the target processor width: a 32-bit processor has a 32-bit memory
architecture. However, some applications require target words to be broken into multiple, consecutive, and
narrower memory words.

By default, the hex conversion utility sets memory width to the target width (in this case, 32 hits).
You can change the memory width (except for TI-TXT format) by:

» Using the --memwidth option. This changes the memory width value for the entire file.

» Setting the memwidth parameter of the ROMS directive. This changes the memory width value for the
address range specified in the ROMS directive and overrides the --memwidth option for that range.
See Section 12.5.

For both methods, use a value that is a power of 2 greater than or equal to 8.

You should change the memory width default value of 16 only when you need to break single target words
into consecutive, narrower memory words.

TI-TXT Format is 8 Bits Wide

NOTE: You cannot change the memory width of the TI-TXT format. The TI-TXT hex format supports
an 8-bit memory width only.

Figure 12-3 demonstrates how the memory width is related to object file data.

Figure 12-3. Object File Data and Memory Widths

Source file

.word OAABBCCDDh
word 011223344h

..

Object file data (assumed to be in big-endian format)

[a][58] (o5 [o0]
mEBEm

.o

Memory widths (variable)

--memwidth=32 (default)

-memwidth=16

-—-memwidth=8

[anpaccon] [aaes)

[11223364] [ccoo)
Data after e
of e

Do || m || = O[>
£l (o] = Q|| || >

12.4.3 Partitioning Data Into Output Files

ROM width determines how the hex conversion utility partitions the data into output files. ROM width
specifies the physical width (in bits) of each ROM device and corresponding output file (usually one byte
or eight bits). After the object file data is mapped to the memory words, the memory words are broken into
one or more output files. The number of output files is determined by the following formulas:

* If memory width = ROM width:
number of files = memory width + ROM width

260

Hex Conversion Utility Description SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Understanding Memory Widths

* If memory width < ROM width:
number of files = 1
For example, for a memory width of 32, you could specify a ROM width value of 32 and get a single

output file containing 32-bit words. Or you can use a ROM width value of 16 to get two files, each
containing 16 bits of each word.

The default ROM width that the hex conversion utility uses depends on the output format:

« All hex formats except TI-Tagged are configured as lists of 8-bit bytes; the default ROM width for these
formats is 8 bits.

* TI-Tagged is a 16-bit format; the default ROM width for TI-Tagged is 16 bits.

The TI-Tagged Format is 16 Bits Wide

NOTE: You cannot change the ROM width of the TI-Tagged format. The TI-Tagged format supports
a 16-bit ROM width only.

TI-TXT Format is 8 Bits Wide

NOTE: You cannot change the ROM width of the TI-TXT format. The TI-TXT hex format supports
only an 8-bit ROM width.

You can change ROM width (except for TI-Tagged and TI-TXT formats) by:
» Using the --romwidth option. This option changes the ROM width value for the entire object file.

» Setting the romwidth parameter of the ROMS directive. This parameter changes the ROM width value
for a specific ROM address range and overrides the --romwidth option for that range. See
Section 12.5.

For both methods, use a value that is a power of 2 greater than or equal to 8.

If you select a ROM width that is wider than the natural size of the output format, the utility simply writes
multibyte fields into the file. The --romwidth option is ignored for the TI-TXT and TI-Tagged formats.

Figure 12-4 illustrates how the object file data, memory, and ROM widths are related to one another.

Memory width and ROM width are used only for grouping the object file data; they do not represent
values. Thus, the byte ordering of the object file data is maintained throughout the conversion process. To
refer to the partitions within a memory word, the bits of the memory word are always numbered from right
to left as follows:

--memwidth=32
AABBCCDD11223344
31 0

SPRUHV6C-July 2014—-Revised July 2018 Hex Conversion Utility Description 261

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Understanding Memory Widths www.ti.com

Figure 12-4. Data, Memory, and ROM Widths

Source file
word OAABBCCDDh

word 011223344h

Object file data (assumed to be in big-endian format)

AA||BB||/CC || DD
11(]22]1 33|44

AABBCCDD
11223344
Data after
phase |
of armhex m
Data after
phase ||
of armhex AABBCCDD11223344
BB DD 22 44
AA CC 11 33
AABBCCDD11223344
262 Hex Conversion Utility Description SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com

The ROMS Directive

12.5 The ROMS Directive

The ROMS directive specifies the physical memory configuration of your system as a list of address-range

parameters.

Each address range produces one set of files containing the hex conversion utility output data that
corresponds to that address range. Each file can be used to program one single ROM device.

The ROMS directive is similar to the MEMORY directive of the PRU linker: both define the memory map of
the target address space. Each line entry in the ROMS directive defines a specific address range. The

general syntax is:

ROMS
{

romname : [origin=value,] [length=value,] [romwidth=value,]

[memwidth=value,] [fill=value]
[files={ filename ,, filename ,, ...}]

romname : [origin=value,] [length=value,] [romwidth=value,]

ROMS
romname

origin

[memwidth=value,] [fill=value]
[files={ filename ,, filename ,, ...}]

begins the directive definition.

identifies a memory range. The name of the memory range can be one to eight
characters in length. The name has no significance to the program; it simply identifies
the range, except when the output is for a load image in which case it denotes the
section name. (Duplicate memory range names are allowed.)

specifies the starting address of a memory range. It can be entered as origin, org, or o.
The associated value must be a decimal, octal, or hexadecimal constant. If you omit
the origin value, the origin defaults to 0. The following table summarizes the notation
you can use to specify a decimal, octal, or hexadecimal constant:

Constant

Notation Example

Hexadecimal
Octal
Decimal

Ox prefix or h suffix 0x77 or 077h
0 prefix 077
No prefix or suffix 77

length

romwidth

memwidth

fill

specifies the length of a memory range as the physical length of the ROM device. It
can be entered as length, len, or I. The value must be a decimal, octal, or hexadecimal
constant. If you omit the length, it defaults to the length of the entire address space.

specifies the physical ROM width of the range in bits (see Section 12.4.3). Any value
you specify here overrides the --romwidth option. The value must be a decimal, octal,
or hexadecimal constant that is a power of 2 greater than or equal to 8.

specifies the memory width of the range in bits (see Section 12.4.2). Any value you
specify here overrides the --memwidth option. The value must be a decimal, octal, or
hexadecimal constant that is a power of 2 greater than or equal to 8. When using the
memwidth parameter, you must also specify the paddr parameter for each section in
the SECTIONS directive. (See Section 12.6.)

specifies a fill value to use for the range. In image mode, the hex conversion utility
uses this value to fill any holes between sections in a range. A hole is an area between
the input sections that comprises an output section that contains no actual code or
data. The fill value must be a decimal, octal, or hexadecimal constant with a width
equal to the target width. Any value you specify here overrides the --fill option. When
using fill, you must also use the --image command line option. (See Section 12.10.2.)

SPRUHV6C-July 2014—-Revised July 2018 Hex Conversion Utility Description 263
Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS

INSTRUMENTS
The ROMS Directive www.ti.com
files identifies the names of the output files that correspond to this range. Enclose the list of

names in curly braces and order them from least significant to most significant output
file, where the bits of the memory word are numbered from right to left. The number of
file names must equal the number of output files that the range generates. To calculate
the number of output files, see Section 12.4.3. The utility warns you if you list too many
or too few filenames.

Unless you are using the --image option, all of the parameters that define a range are optional; the
commas and equal signs are also optional. A range with no origin or length defines the entire address
space. In image mode, an origin and length are required for all ranges.

Ranges must not overlap and must be listed in order of ascending address.

12.5.1 When to Use the ROMS Directive

If you do not use a ROMS directive, the utility defines a single default range that includes the entire
address space. This is equivalent to a ROMS directive with a single range without origin or length.

Use the ROMS directive when you want to:

Program large amounts of data into fixed-size ROMs. When you specify memory ranges
corresponding to the length of your ROMs, the utility automatically breaks the output into blocks that fit
into the ROMs.

Restrict output to certain segments. You can also use the ROMS directive to restrict the conversion
to a certain segment or segments of the target address space. The utility does not convert the data
that falls outside of the ranges defined by the ROMS directive. Sections can span range boundaries;
the utility splits them at the boundary into multiple ranges. If a section falls completely outside any of
the ranges you define, the utility does not convert that section and issues no messages or warnings.
Thus, you can exclude sections without listing them by name with the SECTIONS directive. However, if
a section falls partially in a range and partially in unconfigured memory, the utility issues a warning and
converts only the part within the range.

Use image mode. When you use the --image option, you must use a ROMS directive. Each range is
filled completely so that each output file in a range contains data for the whole range. Holes before,
between, or after sections are filled with the fill value from the ROMS directive, with the value specified
with the --fill option, or with the default value of 0.

12.5.2 An Example of the ROMS Directive

The ROMS directive in Example 12-1 shows how 16K bytes of 16-bit memory could be partitioned for two
8K-byte 8-bit EPROMSs. Figure 12-5 illustrates the input and output files.

Example 12-1. A ROMS Directive Example

infile.out

--image

--memwidth 16

ROMS
{
EPROM1: org = 0x00004000, len = 0x2000, romwidth = 8
files = { rom4000.b0, rom4000.b1}
EPROM2: org = 0x00006000, len = 0x2000, romwidth = 8,
fill = OxFFOOFFOO,
files = { rom6000.b0, rom6000.b1}
}
264 Hex Conversion Utility Description SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com

The ROMS Directive

Figure 12-5. The infile.out File Partitioned Into Four Output Files

infile.out

0x00004000

dext
Ox0000487F
0x00005B80

.data
0Ox0000633F
0x00006700

table
Ox00007CTF

The map file (specified with the --map option) is advantageous when you use the ROMS directive with

0x00004000
(org)

Ox00004880

0x00005B80

0x00005FFF

Ox00006000
0x00006340
0x00006700

0x00007C80
0Ox00007FFF

Output files:
EPROM1
rom4000.b0 rom4000.b1
dext text

| e
o]
.data .data
"%\/_/
Width = 8 bits
len = 2000h (8K) —
EPROM2
romG6000.b0 romB000.b1
.data .data
[~ =
I
fable .fable
5 =
s I

multiple ranges. The map file shows each range, its parameters, names of associated output files, and a
list of contents (section names and fill values) broken down by address. Example 12-2 is a segment of the
map file resulting from the example in Example 12-1.

Example 12-2. Map File Output From Example 12-1 Showing Memory Ranges

OUTPUT FILES: rom4000.b0 [bO. .b7]

rom4000.b1 [b8. .b15]

CONTENTS: 00004000..0000487f .text
00004880. .00005b7F FILL = 00000000

00005b80. .00005FFfF .data

OUTPUT FILES: rom6000.b0 [bO..b7]
rom6000.b1 [b8..b15]
CONTENTS: 00006000..0000633F _data
00006340. .000066FF FILL = FFOOFFOO
00006700. .00007c7f _table

00007c¢80..00007FFF FILL = TFOOFFOO

SPRUHV6C-July 2014—-Revised July 2018
Submit Documentation Feedback

Hex Conversion Utility Description

Copyright © 2014-2018, Texas Instruments Incorporated

265

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

The SECTIONS Directive www.ti.com

EPROML1 defines the address range from 0x00004000 through 0xO0005FFF with the following sections:

This section ... Has this range ...
.text 0x00004000 through 0x0000487F
.data 0x00005B80 through 0X00005FFF

The rest of the range is filled with Oh (the default fill value), converted into two output files:
* rom4000.b0 contains bits 0 through 7
e rom4000.b1 contains bits 8 through 15

EPROM2 defines the address range from 0x00006000 through 0x00007FFF with the following sections:

This section ... Has this range ...
.data 0x00006000 through 0x0000633F
.table 0x00006700 through 0x00007C7F

The rest of the range is filled with 0OxXFFOOFFO0O (from the specified fill value). The data from this range is
converted into two output files:

* rom6000.b0 contains bits O through 7
* rom6000.b1 contains bits 8 through 15

12.6 The SECTIONS Directive
You can convert specific sections of the object file by name with the hex conversion utility SECTIONS
directive. You can also specify those sections that you want to locate in ROM at a different address than
the load address specified in the linker command file. If you:
« Use a SECTIONS directive, the utility converts only the sections that you list in the directive and
ignores all other sections in the object file.
» Do not use a SECTIONS directive, the utility converts all initialized sections that fall within the
configured memory.
Uninitialized sections are never converted, whether or not you specify them in a SECTIONS directive.
Sections Generated by the C/C++ Compiler
NOTE: The PRU C/C++ compiler automatically generates these sections:
. Initialized sections: .text, .const, .cinit, and .switch
¢ Uninitialized sections: .bss, .stack, and .sysmem
Use the SECTIONS directive in a command file. (See Section 12.2.2.) The general syntax is:
SECTIONS
{
oname(sname)[:] [paddr=value]
oname(sname)[:] [paddr= boot]
oname(sname)[:] [boot]
}
SECTIONS begins the directive definition.
oname identifies the object filename the section is located within. The filename is optional
when only a single input file is given, but required otherwise.
sname identifies a section in the input file. If you specify a section that does not exist, the
utility issues a warning and ignores the name.
266 Hex Conversion Utility Description SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

I} TEXAS
INSTRUMENTS
www.ti.com The Load Image Format (--load_image Option)
paddr=value specifies the physical ROM address at which this section should be located. This value

12.7

12.7.

12.7.

overrides the section load address given by the linker. This value must be a decimal,
octal, or hexadecimal constant. It can also be the word boot (to indicate a boot table
section for use with a boot loader). If your file contains multiple sections, and if one
section uses a paddr parameter, then all sections must use a paddr parameter.

boot configures a section for loading by a boot loader. This is equivalent to using
paddr=boot. Boot sections have a physical address determined by the location of the
boot table. The origin of the boot table is specified with the --bootorg option.

For more similarity with the linker's SECTIONS directive, you can use colons after the section names (in
place of the equal sign on the boot keyboard). For example, the following statements are equivalent:

SECTIONS { .text: .data: boot }

SECTIONS { .text: .data = boot }

In the example below, the object file contains six initialized sections: .text, .data, .const, .coeff, and .tables.
Suppose you want only .text and .data to be converted. Use a SECTIONS directive to specify this:
SECTIONS { .text: .data: }

To configure both of these sections for boot loading, add the boot keyword:
SECTIONS { .text = boot .data = boot }

The Load Image Format (--load_image Option)

A load image is an obiject file which contains the load addresses and initialized sections of one or more
executable files. The load image object file can be used for ROM masking or can be relinked in a
subsequent link step.

1 Load Image Section Formation

The load image sections are formed by collecting the initialized sections from the input executables. There
are two ways the load image sections are formed:

» Using the ROMS Directive. Each memory range that is given in the ROMS directive denotes a load
image section. The romname is the section name. The origin and length parameters are required. The
memwidth, romwidth, and files parameters are invalid and are ignored.

When using the ROMS directive and the load_image option, the --image option is required.

« Default Load Image Section Formation. If no ROMS directive is given, the load image sections are
formed by combining contiguous initialized sections in the input executables. Sections with gaps
smaller than the target word size are considered contiguous.

The default section names are image_1, image_2, ... If another prefix is desired, the --
section_name_prefix=prefix option can be used.

2 Load Image Characteristics

All load image sections are initialized data sections. In the absence of a ROMS directive, the load/run
address of the load image section is the load address of the first input section in the load image section. If
the SECTIONS directive was used and a different load address was given using the paddr parameter, this
address will be used.

The load image format always creates a single load image object file. The format of the load image object
file is determined based on the input files. The file is not marked executable and does not contain an entry
point. The default load image object file name is ti_load image.obj. This can be changed using the --
outfile option. Only one --outfile option is valid when creating a load image, all other occurrences are
ignored.

SPRUHV6C-July 2014—-Revised July 2018 Hex Conversion Utility Description 267
Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Excluding a Specified Section www.ti.com

Concerning Load Image Format
NOTE: These options are invalid when creating a load image:
e --memwidth
e --romwidth
e --Zero
* --byte

If a boot table is being created, either using the SECTIONS directive or the --boot option, the
ROMS directive must be used.

12.8 Excluding a Specified Section

The --exclude section_name option can be used to inform the hex utility to ignore the specified section. If
a SECTIONS directive is used, it overrides the --exclude option.

For example, if a SECTIONS directive containing the section name mysect is used and an --exclude
mysect is specified, the SECTIONS directive takes precedence and mysect is not excluded.

The --exclude option has a limited wildcard capability. The * character can be placed at the beginning or
end of the name specifier to indicate a suffix or prefix, respectively. For example, --exclude sect*
disqualifies all sections that begin with the characters sect.

If you specify the --exclude option on the command line with the * wildcard, use quotes around the section
name and wildcard. For example, --exclude"sect*". Using quotes prevents the * from being interpreted by
the hex conversion utility. If --exclude is in a command file, do not use quotes.

If multiple object files are given, the object file in which the section to be excluded can be given in the form
oname(sname). If the object filename is not provided, all sections matching the section name are
excluded. Wildcards cannot be used for the filename, but can appear within the parentheses.

12.9 Assigning Output Filenames

When the hex conversion utility translates your object file into a data format, it partitions the data into one
or more output files. When multiple files are formed by splitting memory words into ROM words, filenames
are always assigned in order from least to most significant, where bits in the memory words are numbered
from right to left. This is true, regardless of target or endian ordering.

The hex conversion utility follows this sequence when assigning output filenames:

1. It looks for the ROMS directive. If a file is associated with a range in the ROMS directive and you
have included a list of files (files = {. . .}) on that range, the utility takes the filename from the list.

For example, assume that the target data is 32-bit words being converted to four files, each eight bits
wide. To name the output files using the ROMS directive, you could specify:
ROMS

{
RANGE1: romwidth=8, files={ xyz.b0 xyz.bl xyz.b2 xyz.b3 }

}

The utility creates the output files by writing the least significant bits to xyz.b0 and the most significant
bits to xyz.b3.

2. It looks for the --outfile options. You can specify names for the output files by using the --outfile
option. If no filenames are listed in the ROMS directive and you use --outfile options, the utility takes
the filename from the list of --outfile options. The following line has the same effect as the example
above using the ROMS directive:

--outfile=xyz.b0 --outfile=xyz._.bl --outfile=xyz.b2 --outfile=xyz.b3

If both the ROMS directive and --outfile options are used together, the ROMS directive overrides the --
outfile options.

3. It assigns a default filename. If you specify no filenames or fewer names than output files, the utility
assigns a default filename. A default filename consists of the base name from the input file plus a 2- to
3-character extension. The extension has three parts:

268 Hex Conversion Utility Description SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

TEXAS
INSTRUMENTS

www.ti.com Image Mode and the --fill Option

a. A format character, based on the output format (see Section 12.14):

a for ASCII-Hex
i for Intel

m for Motorola-S
t for TI-Tagged
X for Tektronix

b. The range number in the ROMS directive. Ranges are numbered starting with 0. If there is no
ROMS directive, or only one range, the utility omits this character.

c. The file number in the set of files for the range, starting with 0 for the least significant file.

For example, assume a.out is for a 32-bit target processor and you are creating Intel format output.
With no output filenames specified, the utility produces four output files named a.i0, a.il, a.i2, a.i3.

If you include the following ROMS directive when you invoke the hex conversion utility, you would have
eight output files:

ROMS

{
0x00001000 1

0x00002000 1

0x1000
0x1000

rangel: o
range2: o

}

These output files ... Contain data in these locations ...
a.i00, a.i01, a.i02, a.i03 0x00001000 through 0x00001FFF
a.i10, a.ill, a.i12, a.i13 0x00002000 through 0x00002FFF

12.10 Image Mode and the --fill Option

This section points out the advantages of operating in image mode and describes how to produce output
files with a precise, continuous image of a target memory range.

12.10.1 Generating a Memory Image

With the --image option, the utility generates a memory image by completely filling all of the mapped
ranges specified in the ROMS directive.

An object file consists of blocks of memory (sections) with assigned memory locations. Typically, all
sections are not adjacent: there are holes between sections in the address space for which there is no
data. When such a file is converted without the use of image mode, the hex conversion utility bridges
these holes by using the address records in the output file to skip ahead to the start of the next section. In
other words, there may be discontinuities in the output file addresses. Some EPROM programmers do not
support address discontinuities.

In image mode, there are no discontinuities. Each output file contains a continuous stream of data that
corresponds exactly to an address range in target memory. Any holes before, between, or after sections
are filled with a fill value that you supply.

An output file converted by using image mode still has address records, because many of the
hexadecimal formats require an address on each line. However, in image mode, these addresses are
always contiguous.

Defining the Ranges of Target Memory

NOTE: If you use image mode, you must also use a ROMS directive. In image mode, each output
file corresponds directly to a range of target memory. You must define the ranges. If you do
not supply the ranges of target memory, the utility tries to build a memory image of the entire
target processor address space. This is potentially a huge amount of output data. To prevent
this situation, the utility requires you to explicitly restrict the address space with the ROMS
directive.

SPRUHV6C-July 2014—-Revised July 2018 Hex Conversion Utility Description

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

269

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Image Mode and the --fill Option www.ti.com

12.10.2 Specifying a Fill Value

The --fill option specifies a value for filling the holes between sections. The fill value must be specified as
an integer constant following the --fill option. The width of the constant is assumed to be that of a word on
the target processor. For example, specifying --fill=OXFFFF results in a fill pattern of 0XO000FFFF. The
constant value is not sign extended.

The hex conversion utility uses a default fill value of 0 if you do not specify a value with the fill option. The
--fill option is valid only when you use --image; otherwise, it is ignored.

12.10.3 Steps to Follow in Using Image Mode

Step 1: Define the ranges of target memory with a ROMS directive. See Section 12.5.

Step 2: Invoke the hex conversion utility with the --image option. You can optionally use the --zero
option to reset the address origin to O for each output file. If you do not specify a fill value
with the ROMS directive and you want a value other than the default of 0, use the --fill option.

12.11 Array Output Format

The --array option causes the output to be generated in C array format. In this format, data contained in
initialized sections of an executable file are defined as C arrays. Output arrays may be compiled along
with a host program and used to initialize the target at runtime.

Arrays are formed by collecting the initialized sections from the input executable. There are two ways
arrays are formed:

* With the ROMS directive. Each memory range that is given in the ROMS directive denotes an array.
The romname is used as the array name. The origin and length parameters of the ROM directive are
required. The memwidth, romwidth, and files parameters are invalid and are ignored.

* No ROMS directive (default). If no ROMS directive is given, arrays are formed by combining
initialized sections within each page, beginning with the first initialized section. Arrays will reflect any
gaps that exist between sections.

The default names for the arrays generated for test.out are test_image_0 and test_image_1. The --

array:name_prefix option can be used to override the default prefix for array names. For example, use
--array:name_prefix=myarray to cause the names for the arrays to be myarray 0 and myarray_1.

The default data type for page0 array elements is uint32_t. However, if the --array:page0_ type_size=8
option is used, page0 array elements have a data type of uint8_t. The data type for pagel array elements
is always uint8_t.

270

Hex Conversion Utility Description SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Controlling the ROM Device Address

12.12 Controlling the ROM Device Address

The hex conversion utility output address field corresponds to the ROM device address. The EPROM
programmer burns the data into the location specified by the hex conversion utility output file address field.
The hex conversion utility offers some mechanisms to control the starting address in ROM of each
section. However, many EPROM programmers offer direct control of the location in ROM in which the
data is burned.

The address field of the hex-conversion utility output file is controlled by the following items, which are
listed from low to high priority:

1. The linker command file. By default, the address field of the hex conversion utility output file is the
load address (as given in the linker command file).

2. The paddr parameter of the SECTIONS directive. When the paddr parameter is specified for a
section, the hex conversion utility bypasses the section load address and places the section in the
address specified by paddr.

3. The --zero option. When you use the --zero option, the utility resets the address origin to 0 for each
output file. Since each file starts at 0 and counts upward, any address records represent offsets from
the beginning of the file (the address within the ROM) rather than actual target addresses of the data.

You must use the --zero option in conjunction with the --image option to force the starting address in
each output file to be zero. If you specify the --zero option without the --image option, the utility issues
a warning and ignores the --zero option.

4. The --byte option. Some EPROM programmers may require the output file address field to contain a
byte count rather than a word count. If you use the —byte option, the output file address increments
once for each byte. For example, if the starting address is Oh, the first line contains eight words, and
you use no —byte option, the second line would start at address 8 (8h). If the starting address is Oh, the
first line contains eight words, and you use the —byte option, the second line would start at address 16
(010h). The data in both examples are the same; —byte affects only the calculation of the output file
address field, not the actual target processor address of the converted data.

The --byte option causes the address records in an output file to refer to byte locations within the file,
whether the target processor is byte-addressable or not.

SPRUHV6C-July 2014—-Revised July 2018 Hex Conversion Utility Description 271

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Control Hex Conversion Utility Diagnostics www.ti.com

12.13 Control Hex Conversion Utility Diagnostics

The hex conversion utility uses certain C/C++ compiler options to control hex-converter-generated

diagnostics.

--diag_error=id

--diag_remark=id

--diag_suppress=id

--diag_warning=id

--display_error_number

--issue_remarks
--no_warnings
--set_error_limit=count

--verbose_diagnostics

Categorizes the diagnostic identified by id as an error. To determine the
numeric identifier of a diagnostic message, use the --display_error_number
option first in a separate link. Then use --diag_error=id to recategorize the
diagnostic as an error. You can only alter the severity of discretionary
diagnostics.

Categorizes the diagnostic identified by id as a remark. To determine the
numeric identifier of a diagnostic message, use the --display_error_number
option first in a separate link. Then use --diag_remark=id to recategorize the
diagnostic as a remark. You can only alter the severity of discretionary
diagnostics.

Suppresses the diagnostic identified by id. To determine the numeric
identifier of a diagnostic message, use the --display_error_number option first
in a separate link. Then use --diag_suppress=id to suppress the diagnostic.
You can only suppress discretionary diagnostics.

Categorizes the diagnostic identified by id as a warning. To determine the
numeric identifier of a diagnostic message, use the --display_error_number
option first in a separate link. Then use --diag_warning=id to recategorize the
diagnostic as a warning. You can only alter the severity of discretionary
diagnostics.

Displays a diagnostic's numeric identifier along with its text. Use this option in
determining which arguments you need to supply to the diagnostic
suppression options (--diag_suppress, --diag_error, --diag_remark, and --
diag_warning). This option also indicates whether a diagnostic is
discretionary. A discretionary diagnostic is one whose severity can be
overridden. A discretionary diagnostic includes the suffix -D; otherwise, no
suffix is present. See the PRU Optimizing C/C++ Compiler User's Guide for
more information on understanding diagnostic messages.

Issues remarks (nonserious warnings), which are suppressed by default.
Suppresses warning diagnostics (errors are still issued).

Sets the error limit to count, which can be any decimal value. The linker
abandons linking after this number of errors. (The default is 100.)

Provides verbose diagnostics that display the original source with line-wrap
and indicate the position of the error in the source line

272

Hex Conversion Utility Description

SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Description of the Object Formats

12.14 Description of the Object Formats

The hex conversion utility has options that identify each format. Table 12-2 specifies the format options.
They are described in the following sections.

e You should use only one of these options on the command line. If you use more than one option, the
last one you list overrides the others.

» The default format is Tektronix (--tektronix option).

Table 12-2. Options for Specifying Hex Conversion Formats

Option Alias Format Address Bits Default Width
--ascii -a ASCII-Hex 16 8
--intel -i Intel 32 8
--motorola=1 -m1 Motorola-S1 16 8
--motorola=2 -m2 Motorola-S2 24 8
--motorola=3 -m3 Motorola-S3 32 8
--ti-tagged -t TI-Tagged 16 16
--ti_txt TI_TXT 8 8
--tektronix -X Tektronix 32 8

Address bits determine how many bits of the address information the format supports. Formats with 16-
bit addresses support addresses up to 64K only. The utility truncates target addresses to fit in the number
of available bits.

The default width determines the default output width of the format. You can change the default width by
using the --romwidth option or by using the romwidth parameter in the ROMS directive. You cannot
change the default width of the TI-Tagged format, which supports a 16-bit width only.

12.14.1 ASCII-Hex Object Format (--ascii Option)

The ASCII-Hex object format supports 16-bit addresses. The format consists of a byte stream with bytes
separated by spaces. Figure 12-6 illustrates the ASCII-Hex format.

Figure 12-6. ASCII-Hex Object Format

Nonprintable
Nonprintable Address end code

start code 1_‘ Jj

"B $AXXXXXXXX,
XX XX XX XX XX XX XX XX XX XX. . ."C

Data byte

The file begins with an ASCII STX character (ctrl-B, 02h) and ends with an ASCII ETX character (ctrl-C,
03h). Address records are indicated with SAXXXXXXX, in which XXXXXXXX is a 8-digit (16-bit)
hexadecimal address. The address records are present only in the following situations:

* When discontinuities occur
* When the byte stream does not begin at address 0

You can avoid all discontinuities and any address records by using the --image and --zero options. This
creates output that is simply a list of byte values.

SPRUHV6C-July 2014—-Revised July 2018 Hex Conversion Utility Description 273

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Description of the Object Formats www.ti.com

12.14.2 Intel MCS-86 Object Format (--intel Option)

The Intel object format supports 16-bit addresses and 32-bit extended addresses. Intel format consists of
a 9-character (4-field) prefix (which defines the start of record, byte count, load address, and record type),
the data, and a 2-character checksum suffix.

The 9-character prefix represents three record types:

Record Type Description

00 Data record
01 End-of-file record
04 Extended linear address record

Record type00, the data record, begins with a colon (:) and is followed by the byte count, the address of
the first data byte, the record type (00), and the checksum. The address is the least significant 16 bits of a
32-bit address; this value is concatenated with the value from the most recent 04 (extended linear
address) record to create a full 32-bit address. The checksum is the 2s complement (in binary form) of the
preceding bytes in the record, including byte count, address, and data bytes.

Record type 01, the end-of-file record, also begins with a colon (:), followed by the byte count, the
address, the record type (01), and the checksum.

Record type 04, the extended linear address record, specifies the upper 16 address bits. It begins with a
colon (:), followed by the byte count, a dummy address of Oh, the record type (04), the most significant
16 bits of the address, and the checksum. The subsequent address fields in the data records contain the
least significant bytes of the address.

Figure 12-7 illustrates the Intel hexadecimal object format.

Figure 12-7. Intel Hexadecimal Object Format

Start
character
Address

Extended linear
address record
Most significant 16 bits

:2000000000000100020003000400050006000700080009000A000B000C0O00DO00OEOOOF0068
$2000200010001100120013001400150016001700180019001A001B001C001D001E001F0048 | Data
:2000400000000100020003000400050006000700080009000A000B000C0O00DO0O0OEOOOF0028 records

:2000600010001100120013001400150016001700180019001A001B001C001D001E001F0008
:00000001FF (]
T |
‘ Checksum
Byte Record End-of-file
count type record
274 Hex Conversion Utility Description SPRUHV6C—-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Description of the Object Formats

12.14.3 Motorola Exorciser Object Format (--motorola Option)

The Motorola S1, S2, and S3 formats support 16-bit, 24-bit, and 32-bit addresses, respectively. The
formats consist of a start-of-file (header) record, data records, and an end-of-file (termination) record.
Each record consists of five fields: record type, byte count, address, data, and checksum. The three
record types are:

Record Type Description

SO Header record

S1 Code/data record for 16-bit addresses (S1 format)
S2 Code/data record for 24-bit addresses (S2 format)
S3 Code/data record for 32-bit addresses (S3 format)
S7 Termination record for 32-bit addresses (S3 format)
S8 Termination record for 24-bit addresses (S2 format)
S9 Termination record for 16-bit addresses (S1 format)

The byte count is the character pair count in the record, excluding the type and byte count itself.

The checksum is the least significant byte of the 1s complement of the sum of the values represented by
the pairs of characters making up the byte count, address, and the code/data fields.

Figure 12-8 illustrates the Motorola-S object format.

Figure 12-8. Motorola-S Format

Record Address Checksum

type
S00600004844521B _F Header record
S$32200DD
S31A0001FFEB00FA Data records
S70500000000FA “F Termination

record
Checksum
Byte count
Address for S3 records
SPRUHV6C-July 2014—-Revised July 2018 Hex Conversion Utility Description 275

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS

INSTRUMENTS
Description of the Object Formats www.ti.com
12.14.4 Extended Tektronix Object Format (--tektronix Option)
The Tektronix object format supports 32-bit addresses and has two types of records:
Data records contains the header field, the load address, and the object code.
Termination records signifies the end of a module.
The header field in the data record contains the following information:
Number of ASCII
Item Characters Description
% 1 Data type is Tektronix format
Block length 2 Number of characters in the record, minus the %
Block type 1 6 = data record
8 = termination record
Checksum 2 A 2-digit hex sum modulo 256 of all values in the record except the % and the

checksum itself.

The load address in the data record specifies where the object code will be located. The first digit
specifies the address length; this is always 8. The remaining characters of the data record contain the
object code, two characters per byte.

Figure 12-9 illustrates the Tektronix object format.

Figure 12-9. Extended Tektronix Object Format

Checksum: 21h = 1+5+6+8+1+0+0+0+0+0+0+
0+

Block length o 2+0+2+0+2+0+2+0+2+0+2+

1ah = 26 4'_‘_‘ I: Object code: 6 bytes

Header %$15621810000000202020202020

character T
Load address: 10000000h
Block type: 6 Length of
(data) load address
276 Hex Conversion Utility Description SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Description of the Object Formats

12.14.5 Texas Instruments SDSMAC (Tl-Tagged) Object Format (--ti_tagged Option)

The Texas Instruments SDSMAC (TI-Tagged) object format supports 16-bit addresses, including start-of-
file record, data records, and end-of-file record. Each data records consists of a series of small fields and
is signified by a tag character:

Tag Character Description

K Followed by the program identifier
Followed by a checksum

Followed by a dummy checksum (ignored)
Followed by a 16-bit load address
Followed by a data word (four characters)
Identifies the end of a data record

*+ M W © 0

Followed by a data byte (two characters)

Figure 12-10 illustrates the tag characters and fields in TI-Tagged object format.

Figure 12-10. TI-Tagged Object Format
Start-of-file Load

record Program address Tag characters
identifier ‘

9 e e e e S A A A A

KOOOOCOFFTOTI90000BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7EF3DF
BFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFFBFFFF7EE37F Data

BFFFFIBXFFFFBFFFFlBlFFFFXBXFFFFXBXFFFFXBXFFFFXBXFFFFBFFFFBFFFFI71F2451F _ records
T [I I I I I I I]
End-of-file Data
record words Checksum

If any data fields appear before the first address, the first field is assigned address 0000h. Address fields
may be expressed but not required for any data byte. The checksum field, preceded by the tag character
7, is the 2s complement of the sum of the 8-bit ASCII values of characters, beginning with the first tag
character and ending with the checksum tag character (7 or 8). The end-of-file record is a colon (:).

SPRUHV6C-July 2014—-Revised July 2018 Hex Conversion Utility Description 277

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Description of the Object Formats www.ti.com

12.14.6 TI-TXT Hex Format (--ti_txt Option)

The TI-TXT hex format supports 16-bit hexadecimal data. It consists of section start addresses, data byte,
and an end-of-file character. These restrictions apply:

The number of sections is unlimited.

Each hexadecimal start address must be even.

Each line must have 16 data bytes, except the last line of a section.
Data bytes are separated by a single space.

The end-of-file termination tag g is mandatory.

The data record contains the following information:

Iltem Description
@ADDR Hexadecimal start address of a section
DATAN Hexadecimal data byte
q End-of-file termination character

Figure 12-11. TI-TXT Object Format

Section
start

l—l—l

@ADDR1

DATAO]1l DATAO2 .eeeeeses DATAl6
Data
bytes DATA17 DATA32 .eeeeees DATA32
DATAM oo eeesese DATAnNn

Section _* gApDR2

sta DATAOL wvvevenennennnnnnnns DATAn }— Data
bytes
q
End-of-line
character

Example 12-3. TI-TXT Object Format

@F000

31 40 00 03 B2 40 80 5A 20 01 D2 D3 22 00 D2 E3
21 00 3F 40 E8 FD 1F 83 FE 23 F9 3F

@FFFE
00 FO

Q

278

Hex Conversion Utility Description SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

1 Chapter 13
I TEXAS SPRUHV6C-July 2014—Revised July 2018

INSTRUMENTS
Sharing C/C++ Header Files With Assembly Source

You can use the .cdecls assembler directive to share C headers containing declarations and prototypes
between C and assembly code. Any legal C/C++ can be used in a .cdecls block and the C/C++
declarations will cause suitable assembly to be generated automatically, allowing you to reference the
C/C++ constructs in assembly code.

Topic Page

13.1 Overview Of the .CAECIS DIr€CHIVE ...uuiuiiiiiii i et e e as 280

13.2 NOLES ON C/CH+ CONVEISIONS 1uiiuiutiuiitiiitttineaetaeantataneaeaneaneeansaeansaeaneasaneanaaeanennss 280

13.3 Notes 0N C++ SPECITIC CONVEISIONS c.uuuiuiiiiiitieieeiieet et iee ettt saee et aaanaaenes 284

13.4 Special ASSEMDIEr SUPPOIT uuuieieiiiiii et r et e e a e a s e eaeaeanananes 285
SPRUHV6C-July 2014—-Revised July 2018 Sharing C/C++ Header Files With Assembly Source 279

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Overview of the .cdecls Directive www.ti.com

13.1 Overview of the .cdecls Directive

The .cdecls directive allows programmers in mixed assembly and C/C++ environments to share C headers
containing declarations and prototypes between the C and assembly code. Any legal C/C++ can be used
in a .cdecls block and the C/C++ declarations will cause suitable assembly to be generated automatically.
This allows the programmer to reference the C/C++ constructs in assembly code — calling functions,
allocating space, and accessing structure members — using the equivalent assembly mechanisms. While
function and variable definitions are ignored, most common C/C++ elements are converted to assembly:
enumerations, (non function-like) macros, function and variable prototypes, structures, and unions.

See the .cdecls directive description for details on the syntax of the .cdecls assembler directive.

The .cdecls directive can appear anywhere in an assembly source file, and can occur multiple times within
a file. However, the C/C++ environment created by one .cdecls is not inherited by a later .cdecls; the
C/C++ environment starts over for each .cdecls instance.

For example, the following code causes the warning to be issued:

.cdecls C,NOLIST
%{

%}

#define ASMTEST 1

.cdecls C,NOLIST
%{
#ifndef ASMTEST
#warn "ASMTEST not defined!" /* will be issued */
#endif

%}
Therefore, a typical use of the .cdecls block is expected to be a single usage near the beginning of the
assembly source file, in which all necessary C/C++ header files are included.

Use the compiler --include_path=path options to specify additional include file paths needed for the header
files used in assembly, as you would when compiling C files.

Any C/C++ errors or warnings generated by the code of the .cdecls are emitted as they normally would for
the C/C++ source code. C/C++ errors cause the directive to fail, and any resulting converted assembly is
not included.

C/C++ constructs that cannot be converted, such as function-like macros or variable definitions, cause a
comment to be output to the converted assembly file. For example:

; ASM HEADER WARNING - variable definition "ABCD" ignored

The prefix ASM HEADER WARNING appears at the beginning of each message. To see the warnings,
either the WARN parameter needs to be specified so the messages are displayed on STDERR, or else
the LIST parameter needs to be specified so the warnings appear in the listing file, if any.

Finally, note that the converted assembly code does not appear in the same order as the original C/C++
source code and C/C++ constructs may be simplified to a normalized form during the conversion process,
but this should not affect their final usage.

13.2 Notes on C/C++ Conversions
The following sections describe C and C++ conversion elements that you need to be aware of when
sharing header files with assembly source.

13.2.1 Comments

Comments are consumed entirely at the C level, and do not appear in the resulting converted assembly
file.

280 Sharing C/C++ Header Files With Assembly Source SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Notes on C/C++ Conversions

13.2.2 Conditional Compilation (#if/#else/#ifdef/etc.)

Conditional compilation is handled entirely at the C level during the conversion step. Define any necessary
macros either on the command line (using the compiler --define=name=value option) or within a .cdecls
block using #define. The #if, #ifdef, etc. C/C++ directives are not converted to assembly .if, .else, .elseif,
and .endif directives.

13.2.3 Pragmas

Pragmas found in the C/C++ source code cause a warning to be generated as they are not converted.
They have no other effect on the resulting assembly file. See the .cdecls topic for the WARN and
NOWARN parameter discussion for where these warnings are created.

13.2.4 The #error and #warning Directives

These preprocessor directives are handled completely by the compiler during the parsing step of
conversion. If one of these directives is encountered, the appropriate error or warning message is emitted.
These directives are not converted to .emsg or .wmsg in the assembly output.

13.2.5 Predefined symbol _ _ASM_HEADER_ _

The C/C++ macro _ _ASM_HEADER_ _is defined in the compiler while processing code within .cdecls.
This allows you to make changes in your code, such as not compiling definitions, during the .cdecls
processing.

Be Careful With the __ASM_HEADER_ _ Macro

NOTE: You must be very careful not to use this macro to introduce any changes in the code that
could result in inconsistencies between the code processed while compiling the C/C++
source and while converting to assembly.

13.2.6 Usage Within C/C++ asm() Statements

The .cdecls directive is not allowed within C/C++ asm() statements and will cause an error to be
generated.

13.2.7 The #include Directive

The C/C++ #include preprocessor directive is handled transparently by the compiler during the conversion
step. Such #includes can be nested as deeply as desired as in C/C++ source. The assembly directives
.include and .copy are not used or needed within a .cdecls. Use the command line --include_path option to
specify additional paths to be searched for included files, as you would for C compilation.

13.2.8 Conversion of #define Macros

Only object-like macros are converted to assembly. Function-like macros have no assembly
representation and so cannot be converted. Pre-defined and built-in C/C++ macros are not converted to
assembly (i.e., _ FILE_ , _TIME__, _ TI_COMPILER_VERSION__, etc.). For example, this code is
converted to assembly because it is an object-like macro:

#define NAME Charley

This code is not converted to assembly because it is a function-like macro:
#define MAX(X,y) x>y ? X - Yy)
Some macros, while they are converted, have no functional use in the containing assembly file. For

example, the following results in the assembly substitution symbol FOREVER being set to the value
while(1), although this has no useful use in assembly because while(1) is not legal assembly code.

#define FOREVER while(1)

SPRUHV6C-July 2014—-Revised July 2018 Sharing C/C++ Header Files With Assembly Source 281

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Notes on C/C++ Conversions www.ti.com

Macro values are not interpreted as they are converted. For example, the following results in the
assembler substitution symbol OFFSET being set to the literal string value 5+12 and not the value 17.
This happens because the semantics of the C/C++ language require that macros are evaluated in context
and not when they are parsed.

#define OFFSET 5+12

Because macros in C/C++ are evaluated in their usage context, C/C++ printf escape sequences such as
\n are not converted to a single character in the converted assembly macro. See Section 13.2.11 for
suggestions on how to use C/C++ macro strings.

Macros are converted using the .define directive (see Section 13.4.2), which functions similarly to the .asg
assembler directive. The exception is that .define disallows redefinitions of register symbols and
mnemonics to prevent the conversion from corrupting the basic assembly environment. To remove a
macro from the assembly scope, .undef can be used following the .cdecls that defines it (see

Section 13.4.3).

The macro functionality of # (stringize operator) is only useful within functional macros. Since functional
macros are not supported by this process, # is not supported either. The concatenation operator ## is only
useful in a functional context, but can be used degenerately to concatenate two strings and so it is
supported in that context.

13.2.9 The #undef Directive

Symbols undefined using the #undef directive before the end of the .cdecls are not converted to assembly.

13.2.10 Enumerations

Enumeration members are converted to .enum elements in assembly. For example:
enum state { ACTIVE=0x10, SLEEPING=0x01, INTERRUPT=0x100, POWEROFF, LAST};

is converted to the following assembly code:

state .enum

ACTIVE .emember 16

SLEEPING .emember 1

NTERRUPT .emember 256

POWEROFF .emember 257

LAST .emember 258
-endenum

The members are used via the pseudo-scoping created by the .enum directive.
The usage is similar to that for accessing structure members, enum_name.member.

This pseudo-scoping is used to prevent enumeration member names from corrupting other symbols within
the assembly environment.

13.2.11 C Strings

Because C string escapes such as \n and \t are not converted to hex characters 0x0OA and 0x09 until their
use in a string constant in a C/C++ program, C macros whose values are strings cannot be represented
as expected in assembly substitution symbols. For example:

#define MSG ""\tHI\n"

becomes, in assembly:
.define """\tHI\n""""",MSG ; 6 quoted characters! not 5!

When used in a C string context, you expect this statement to be converted to 5 characters (tab, H, I,
newline, NULL), but the .string assembler directive does not know how to perform the C escape
conversions.

You can use the .cstring directive to cause the escape sequences and NULL termination to be properly
handled as they would in C/C++. Using the above symbol MSG with a .cstring directive results in 5
characters of memory being allocated, the same characters as would result if used in a C/C++ strong
context. (See Section 13.4.7 for the .cstring directive syntax.)

282

Sharing C/C++ Header Files With Assembly Source SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Notes on C/C++ Conversions

13.2.12 C/C++ Built-In Functions

The C/C++ built-in functions, such as sizeof(), are not translated to their assembly counterparts, if any, if
they are used in macros. Also, their C expression values are not inserted into the resulting assembly
macro because macros are evaluated in context and there is no active context when converting the
macros to assembly.

Suitable functions such as $sizeof() are available in assembly expressions. However, as the basic types
such as int/char/float have no type representation in assembly, there is no way to ask for $sizeof(int), for
example, in assembly.

13.2.13 Structures and Unions

C/C++ structures and unions are converted to assembly .struct and .union elements. Padding and ending
alignments are added as necessary to make the resulting assembly structure have the same size and
member offsets as the C/C++ source. The primary purpose is to allow access to members of C/C++
structures, as well as to facilitate debugging of the assembly code. For nested structures, the assembly
.tag feature is used to refer to other structures/unions.

The alignment is also passed from the C/C++ source so that the assembly symbol is marked with the
same alignment as the C/C++ symbol. (See Section 13.2.3 for information about pragmas, which may
attempt to modify structures.) Because the alignment of structures is stored in the assembly symbol, built-
in assembly functions like $sizeof() and $alignof() can be used on the resulting structure name symbol.
When using unnamed structures (or unions) in typedefs, such as:

typedef struct { int a_member; } mystrname;

This is really a shorthand way of writing:
struct temporary_name { int a_member; };
typedef temporary_name mystrname;

The conversion processes the above statements in the same manner: generating a temporary name for
the structure and then using .define to output a typedef from the temporary name to the user name. You
should use your mystrname in assembly the same as you would in C/C++, but do not be confused by the
assembly structure definition in the list, which contains the temporary name. You can avoid the temporary
name by specifying a hame for the structure, as in:

typedef struct a_st name { ... } mystrname;

If a shorthand method is used in C to declare a variable with a particular structure, for example:
extern struct a_name { int a_member; } a_variable;

Then after the structure is converted to assembly, a .tag directive is generated to declare the structure of
the external variable, such as:

_a variable .tag a_st _name

This allows you to refer to _a_variable.a_member in your assembly code.

13.2.14 Function/Variable Prototypes

Non-static function and variable prototypes (not definitions) will result in a .global directive being generated
for each symbol found.

See Section 13.3.1 for C++ name mangling issues.

Function and variable definitions will result in a warning message being generated (see the
WARN/NOWARN parameter discussion for where these warnings are created) for each, and they will not
be represented in the converted assembly.

The assembly symbol representing the variable declarations will not contain type information about those
symbols. Only a .global will be issued for them. Therefore, it is your responsibility to ensure the symbol is
used appropriately.

See Section 13.2.13 for information on variables names which are of a structure/union type.

SPRUHV6C-July 2014—-Revised July 2018 Sharing C/C++ Header Files With Assembly Source 283

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Notes on C/C++ Conversions www.ti.com

13.2.15 C Constant Suffixes

The C constant suffixes u, |, and f are passed to the assembly unchanged. The assembler will ignore
these suffixes if used in assembly expressions.

13.2.16 Basic C/C++ Types

13.3

Only complex types (structures and unions) in the C/C++ source code are converted to assembly. Basic
types such as int, char, or float are not converted or represented in assembly beyond any existing .int,
.char, .float, etc. directives that previously existed in assembly.

Typedefs of basic types are therefore also not represented in the converted assembly.

Notes on C++ Specific Conversions

The following sections describe C++ specific conversion elements that you need to be aware of when
sharing header files with assembly source.

13.3.1 Name Mangling

Symbol names may be mangled in C++ source files. When mangling occurs, the converted assembly will
use the mangled names to avoid symbol name clashes. You can use the demangler (dempru) to
demangle names and identify the correct symbols to use in assembly.

To defeat name mangling in C++ for symbols where polymorphism (calling a function of the same name
with different kinds of arguments) is not required, use the following syntax:

extern "'C" void somefunc(int arg);

The above format is the short method for declaring a single function. To use this method for multiple
functions, you can also use the following syntax:

extern "'C"

{

void somefunc(int arg);
int anotherfunc(int arg);

}

13.3.2 Derived Classes

Derived classes are only partially supported when converting to assembly because of issues related to
C++ scoping which does not exist in assembly. The greatest difference is that base class members do not
automatically become full (top-level) members of the derived class. For example:

class base

{
public:
int bl;

¥

class derived : public base

{
public:
int di;

}

In C++ code, the class derived would contain both integers b1 and d1. In the converted assembly
structure "derived”, the members of the base class must be accessed using the name of the base class,
such as derived.__b_base.bl rather than the expected derived.bl.

A non-virtual, non-empty base class will have __b_ prepended to its name within the derived class to
signify it is a base class name. That is why the example above is derived.__b_base.b1 and not simply
derived.base.bl.

284

Sharing C/C++ Header Files With Assembly Source SPRUHV6C-July 2014—-Revised July 2018
Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Notes on C++ Specific Conversions

13.3.3 Templates
No support exists for templates.

13.3.4 Virtual Functions

No support exists for virtual functions, as they have no assembly representation.
13.4 Special Assembler Support

13.4.1 Enumerations (.enum/.emember/.endenum)
The following directives support a pseudo-scoping for enumerations:

ENUM_NAME .enum

MEMBER1 .emember [value]
MEMBER2 .emember [value]
.endenum

The .enum directive begins the enumeration definition and .endenum terminates it.
The enumeration name (ENUM_NAME) cannot be used to allocate space; its size is reported as zero.

The format to use the value of a member is ENUM_NAME.MEMBER, similar to a structure member
usage.

The .emember directive optionally accepts the value to set the member to, just as in C/C++. If not
specified, the member takes a value one more than the previous member. As in C/C++, member names
cannot be duplicated, although values can be. Unless specified with .emember, the first enumeration
member will be given the value 0 (zero), as in C/C++.

The .endenum directive cannot be used with a label, as structure .endstruct directives can, because the
.endenum directive has no value like the .endstruct does (containing the size of the structure).

Conditional compilation directives (.if/.else/.elseif/.endif) are the only other non-enumeration code allowed
within the .enum/.endenum sequence.

13.4.2 The .define Directive

The .define directive functions in the same manner as the .asg directive, except that .define disallows
creation of a substitution symbol that has the same name as a register symbol or mnemonic. It does not
create a new symbol name space in the assembler, rather it uses the existing substitution symbol name
space. The syntax for the directive is:

.define substitution string , substitution symbol name

The .define directive is used to prevent corruption of the assembly environment when converting C/C++
headers.

13.4.3 The .undefine/.unasg Directives

The .undef directive is used to remove the definition of a substitution symbol created using .define or .asg.
This directive will remove the named symbol from the substitution symbol table from the point of the .undef
to the end of the assembly file. The syntax for these directives is:

.undefine substitution symbol name
.unasg substitution symbol name

This can be used to remove from the assembly environment any C/C++ macros that may cause a
problem.

Also see Section 13.4.2, which covers the .define directive.

SPRUHV6C-July 2014—-Revised July 2018 Sharing C/C++ Header Files With Assembly Source 285

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Special Assembler Support www.ti.com

13.4.4 The $defined() Built-In Function

The $defined directive returns true/1 or false/0 depending on whether the name exists in the current
substitution symbol table or the standard symbol table. In essence $defined returns TRUE if the
assembler has any user symbol in scope by that name. This differs from $isdefed in that $isdefed only
tests for NON-substitution symbols. The syntax is:

$defined(substitution symbol name)
A statement such as ".if $defined(macroname)" is then similar to the C code "#ifdef macroname".
See Section 13.4.2 and Section 13.4.3 for the use of .define and .undef in assembly.

13.4.5 The $sizeof Built-In Function

The assembly built-in function $sizeof() can be used to query the size of a structure in assembly. It is an
alias for the already existing $structsz(). The syntax is:

$sizeof(structure name)
The $sizeof function can then be used similarly to the C built-in function sizeof().

The assembler's $sizeof() built-in function cannot be used to ask for the size of basic C/C++ types, such
as $sizeof(int), because those basic type names are not represented in assembly. Only complex types are
converted from C/C++ to assembly.

Also see Section 13.2.12, which notes that this conversion does not happen automatically if the C/C++
sizeof() built-in function is used within a macro.

13.4.6 Structure/Union Alignment and $alignof()

The assembly .struct and .union directives take an optional second argument which can be used to
specify a minimum alignment to be applied to the symbol name. This is used by the conversion process to
pass the specific alignment from C/C++ to assembly.

The assembly built-in function $alignof() can be used to report the alignment of these structures. This can
be used even on assembly structures, and the function will return the minimum alignment calculated by
the assembler.

13.4.7 The .cstring Directive

You can use the .cstring directive to cause the escape sequences and NULL termination to be properly
handled as they would in C/C++.

.cstring "String with C escapes.\nWill be NULL terminated.\012"

See Section 13.2.11 for more information on the .cstring directive.

286

Sharing C/C++ Header Files With Assembly Source SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

Appendix A
I -{IE)S(’?SUMENTS SPRUHV6C—July 2014—Revised July 2018

Symbolic Debugging Directives

The assembler supports several directives that the PRU C/C++ compiler uses for symbolic debugging.

These directives are not meant for use by assembly-language programmers. They require arguments that
can be difficult to calculate manually, and their usage must conform to a predetermined agreement
between the compiler, the assembler, and the debugger. This appendix documents these directives for
informational purposes only.

Topic Page

A.1 DWARF Debugging FOIMALcocuiuinieiiiiieieee et ee et e e e e e e e e e e e e eenens 288

A.2 DeDUQ Dir€CHIVE SYNMTAX «ueuiuinieiiiiininitieaeeen et eaeeea et eeaenan e e e eenen e anaenenns 288
SPRUHV6C-July 2014—-Revised July 2018 Symbolic Debugging Directives 287

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS

INSTRUMENTS
DWARF Debugging Format www.ti.com
A.1 DWARF Debugging Format
A subset of the DWARF symbolic debugging directives are always listed in the assembly language file that
the compiler creates for program analysis purposes. To list the complete set used for full symbolic debug,
invoke the compiler with the --symdebug:dwarf option, as shown below:
clpru --symdebug:dwarf --keep_asm input_file
The --keep_asm option instructs the compiler to retain the generated assembly file.
To disable the generation of all symbolic debug directives, invoke the compiler with the -symdebug:none
option:
clpru --symdebug:none --keep_asm input_file
The DWARF debugging format consists of the following directives:
* The .dwtag and .dwendtag directives define a Debug Information Entry (DIE) in the .debug_info
section.
* The .dwattr directive adds an attribute to an existing DIE.
» The .dwpsn directive identifies the source position of a C/C++ statement.
» The .dwcie and .dwendentry directives define a Common Information Entry (CIE) in the .debug_frame
section.
» The .dwfde and .dwendentry directives define a Frame Description Entry (FDE) in the .debug_frame
section.
* The .dwcfi directive defines a call frame instruction for a CIE or FDE.
A.2 Debug Directive Syntax
Table A-1 is an alphabetical listing of the symbolic debugging directives. For information on the C/C++
compiler, refer to the PRU Optimizing C/C++ Compiler User's Guide.
Table A-1. Symbolic Debugging Directives
Label Directive Arguments
.dwattr DIE label , DIE attribute name (DIE attribute value)[, DIE attribute name (attribute value) [, ...]
.dwcfi call frame instruction opcode[, operand|, operand]]
CIE label .dwcie version , return address register
.dwendentry
.dwendtag
.dwfde CIE label
.dwpsn " filename ", line number , column number
DIE label .dwtag DIE tag name , DIE attribute name (DIE attribute value)[, DIE attribute name (attribute value)
[
288 Symbolic Debugging Directives SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

Appendix B
I -{IE)S(’?SUMENTS SPRUHV6C—July 2014—Revised July 2018

XML Link Information File Description

The PRU linker supports the generation of an XML link information file via the --xml_link_info file option.
This option causes the linker to generate a well-formed XML file containing detailed information about the
result of a link. The information included in this file includes all of the information that is currently produced
in a linker-generated map file.

As the linker evolves, the XML link information file may be extended to include additional information that
could be useful for static analysis of linker results.

This appendix enumerates all of the elements that are generated by the linker into the XML link
information file.

Topic Page

B.1 XML Information File El€mMent Ty PeS . uuuiuiiiiitieiiiiiieeetitiesiee et ea e seneaeae e enananenen 290

07 o Yo U g =T L == 0 =Y S 290
SPRUHV6C-July 2014—-Revised July 2018 XML Link Information File Description 289

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

XML Information File Element Types www.ti.com

B.1 XML Information File Element Types

These element types will be generated by the linker:

Container elements represent an object that contains other elements that describe the object.
Container elements have an id attribute that makes them accessible from other elements.

String elements contain a string representation of their value.
Constant elements contain a 32-bit unsigned long representation of their value (with a 0x prefix).

Reference elements are empty elements that contain an idref attribute that specifies a link to another
container element.

In Section B.2, the element type is specified for each element in parentheses following the element
description. For instance, the <link_time> element lists the time of the link execution (string).

B.2 Document Elements

The root element, or the document element, is <link_info>. All other elements contained in the XML link
information file are children of the <link_info> element. The following sections describe the elements that
an XML information file can contain.

B.2.1 Header Elements

The first elements in the XML link information file provide general information about the linker and the link
session:

The <banner> element lists the name of the executable and the version information (string).
The <copyright> element lists the Tl copyright information (string).

The <link_time> is a timestamp representation of the link time (unsigned 32-bit int).

The <output_file> element lists the name of the linked output file generated (string).

The <entry_point> element specifies the program entry point, as determined by the linker (container)
with two entries:

— The <name> is the entry point symbol name, if any (string).
— The <address> is the entry point address (constant).

Example B-1. Header Element for the hi.out Output File

<banner>PRU Linker Version x.xx </banner>
<copyright>Copyright (c) 2012-2014 Texas Instruments Incorporated</copyright>
<link_time>0x43dfd8a4</link_time>
<output_file>hi.out</output_file>
<entry_point>
<name>_c_int00</name>
<address>0xaf80</address>
</entry_point>

290 XML Link Information File Description SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com

Document Elements

B.2.2

Input File List

The next section of the XML link information file is the input file list, which is delimited with a
<input_file_list> container element. The <input_file_list> can contain any number of <input_file>

elements.

Each <input_file> instance specifies the input file involved in the link. Each <input_file> has an id attribute
that can be referenced by other elements, such as an <object_component>. An <input_file> is a container
element enclosing the following elements:

» The <path> element names a directory path, if applicable (string).
» The <kind> element specifies a file type, either archive or object (string).
* The <file> element specifies an archive name or filename (string).
» The <name> element specifies an object file name, or archive member name (string).

<input_file_list>

<input_file id="fI-1">
<kind>object</kind>
<file>hi.obj</file>
<name>hi.obj</name>

</input_file>

<input_file id="fl1-2">
<path>/tools/lib/</path>
<kind>archive</kind>
<file>rtsxxx.lib</file>
<name>boot.obj</name>

</input_file>

<input_file id="f1-3">
<path>/tools/lib/</path>
<kind>archive</kind>
<file>rtsxxx.lib</file>
<name>exit.obj</name>

</input_file>

<input_file id="fl1-4">
<path>/tools/lib/</path>
<kind>archive</kind>
<file>rtsxxx.lib</file>
<name>printf.obj</name>

</input_file>

</input_file_list>

Example B-2. Input File List for the hi.out Output File

SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

XML Link Information File Description

291

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

Document Elements

13 TEXAS
INSTRUMENTS

www.ti.com

B.2.3 Object Component List

The next section of the XML link information file contains a specification of all of the object components
that are involved in the link. An example of an object component is an input section. In general, an object
component is the smallest piece of object that can be manipulated by the linker.

Example B-3. Object Component List for the fl-4 Input File

The <object_component_list> is a container element enclosing any humber of <object_component>

elements.

Each <object_component> specifies a single object component. Each <object_component> has an id
attribute so that it can be referenced directly from other elements, such as a <logical_group>. An
<object_component> is a container element enclosing the following elements:

e The <name> element names the object component (string).

» The <load_address> element specifies the load-time address of the object component (constant).
» The <run_address> element specifies the run-time address of the object component (constant).

» The <size> element specifies the size of the object component (constant).

» The <input_file_ref> element specifies the source file where the object component originated

(reference).

<object_component id="oc-20">

<name>.text</name>
<load_address>0xac00</load_address>
<run_address>0xac00</run_address>
<size>0xc0</size>

<input_file_ref idref="fl1-4"/>

</object_component>
<object_component id="oc-21">

<name>.data</name>
<load_address>0x80000000</load_address>
<run_address>0x80000000</run_address>
<size>0x0</size>

<input_file_ref idref="f1-4"/>

</object_component>
<object_component id="oc-22">

<name>._bss</name>
<load_address>0x80000000</load_address>
<run_address>0x80000000</run_address>
<size>0x0</size>

<input_file_ref idref="fl1-4"/>

</object_component>

292

XML Link Information File Description

Copyright © 2014-2018, Texas Instruments Incorporated

SPRUHV6C-July 2014—-Revised July 2018
Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com

Document Elements

B.2.4 Logical Group List

The <logical_group_list> section of the XML link information file is similar to the output section listing in a
linker-generated map file. However, the XML link information file contains a specification of GROUP and
UNION output sections, which are not represented in a map file. There are three kinds of list items that
can occur in a <logical_group_list>:

The <logical_group> is the specification of a section or GROUP that contains a list of object
components or logical group members. Each <logical_group> element is given an id so that it may be
referenced from other elements. Each <logical_group> is a container element enclosing the following
elements:

— The <name> element names the logical group (string).

— The <load_address> element specifies the load-time address of the logical group (constant).
— The <run_address> element specifies the run-time address of the logical group (constant).
— The <size> element specifies the size of the logical group (constant).

— The <contents> element lists elements contained in this logical group (container). These elements
refer to each of the member objects contained in this logical group:

» The <object_component_ref> is an object component that is contained in this logical group
(reference).

* The <logical_group_ref>is a logical group that is contained in this logical group (reference).

The <overlay> is a special kind of logical group that represents a UNION, or a set of objects that
share the same memory space (container). Each <overlay> element is given an id so that it may be
referenced from other elements (like from an <allocated_space> element in the placement map). Each
<overlay> contains the following elements:

— The <name> element names the overlay (string).
— The <run_address> element specifies the run-time address of overlay (constant).
— The <size> element specifies the size of logical group (constant).

— The <contents> container element lists elements contained in this overlay. These elements refer to
each of the member objects contained in this logical group:

» The <object_component_ref> is an object component that is contained in this logical group
(reference).

* The <logical_group_ref>is a logical group that is contained in this logical group (reference).

The <split_section> is another special kind of logical group that represents a collection of logical
groups that is split among multiple memory areas. Each <split_section> element is given an id so that
it may be referenced from other elements. The id consists of the following elements.

— The <name> element names the split section (string).

— The <contents> container element lists elements contained in this split section. The
<logical_group_ref> elements refer to each of the member objects contained in this split section,
and each element referenced is a logical group that is contained in this split section (reference).

SPRUHV6C-July 2014—-Revised July 2018 XML Link Information File Description 293
Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Document Elements www.ti.com

Example B-4. Logical Group List for the fl-4 Input File

<logical_group_list>

<logical_group id="1g-7">
<name>.text</name>
<load_address>0x20</load_address>
<run_address>0x20</run_address>
<size>0xb240</size>
<contents>
<object_component_ref idref="o0c-34"/>
<object_component_ref idref="o0c-108"/>
<object_component_ref idref="oc-e2'"/>

</contents>
</logical_group>

<overlay id="lg-b">
<name>UNION_1</name>
<run_address>0xb600</run_address>
<size>0xc0</size>
<contents>
<object_component_ref idref="oc-45"/>
<logical_group_ref idref="1g-8"/>
</contents>
</overlay>

<split_section id="1g-12">
<name>.task_scn</name>
<size>0x120</size>
<contents>
<logical_group_ref idref="1g-10"/>
<logical_group_ref idref="I1g-11"/>
</contents>

</logical_group_list>

294 XML Link Information File Description SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com

Document Elements

B.2.5 Placement Map

The <placement_map> element describes the memory placement details of all named memory areas in

the
me

application, including unused spaces between logical groups that have been placed in a particular
mory area.

The <memory_area> is a description of the placement details within a named memory area (container).
The description consists of these items:

Example

<placeme
<memo

<n

<p

<o

<1

<u

<u

<a

<u

</
</mem

</placem

The <name> names the memory area (string).

The <page_id> gives the id of the memory page in which this memory area is defined (constant).
The <origin> specifies the beginning address of the memory area (constant).

The <length> specifies the length of the memory area (constant).

The <used_space> specifies the amount of allocated space in this area (constant).

The <unused_space> specifies the amount of available space in this area (constant).

The <attributes> lists the RWXI attributes that are associated with this area, if any (string).

The <fill_value> specifies the fill value that is to be placed in unused space, if the fill directive is
specified with the memory area (constant).

The <usage_details> lists details of each allocated or available fragment in this memory area. If the
fragment is allocated to a logical group, then a <logical_group_ref> element is provided to facilitate
access to the details of that logical group. All fragment specifications include <start_address> and
<size> elements.

— The <allocated_space> element provides details of an allocated fragment within this memory area
(container):

» The <start_address> specifies the address of the fragment (constant).
» The <size> specifies the size of the fragment (constant).

e The <logical_group_ref> provides a reference to the logical group that is allocated to this
fragment (reference).

— The <available_space element provides details of an available fragment within this memory area
(container):

» The <start_address> specifies the address of the fragment (constant).
» The <size> specifies the size of the fragment (constant).

B-5. Placement Map for the fl-4 Input File

nt_map>

ry_area>

ame>PMEM</name>

age_id>0x0</page_id>

rigin>0x20</origin>

ength>0x100000</length>

sed_space>0xb240</used_space>

nused_space>0xf4dc0</unused_space>

ttributes>RWXI</attributes>

sage_details>

<allocated_space>
<start_address>0x20</start_address>
<size>0xb240</size>
<logical_group_ref idref="1g-7"/>

</allocated_space>

<available_space>
<start_address>0xb260</start_address>
<size>0xf4dcO</size>

</available_space>

usage_details>

ory_area>

ent_map>

SPRUHV6C-July 2014—-Revised July 2018 XML Link Information File Description 295
Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Document Elements www.ti.com

B.2.6 Symbol Table

The <symbol_table> contains a list of all of the global symbols that are included in the link. The list
provides information about a symbol's name and value. In the future, the symbol_table list may provide
type information, the object component in which the symbol is defined, storage class, etc.

The <symbol> is a container element that specifies the name and value of a symbol with these elements:
e The <name> element specifies the symbol name (string).
e The <value> element specifies the symbol value (constant).

Example B-6. Symbol Table for the fl-4 Input File

<symbol_table>

<symbol>
<name>_c_int00</name>
<value>0xaf80</value>

</symbol>

<symbol>
<name>_main</name>
<value>0xbleO</value>

</symbol>

<symbol>
<name>_printf</name>
<value>0xac00</value>

</symbol>

</symbol_table>

296 XML Link Information File Description SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

I3 TEXAS
INSTRUMENTS

Appendix C

SPRUHV6C-July 2014—Revised July 2018

Hex Conversion Utility Examples

The flexible hex conversion utility offers many options and capabilities. Once you understand the proper
ways to configure your EPROM system and the requirements of the EPROM programmer, you will find
that converting a file for a specific application is easy.

The three scenarios in this appendix show how to develop a hex conversion command file for avoiding
holes, using 16-BIS (16-bit instruction set) code, and using multiple-EPROM systems. The scenarios use
this assembly code:

* Assemble two words into section ''secA" *

.sect "'secA"
-word 012345678h
-word Oabcd1234h

* Assemble two words into section "'secB" *

.sect ''secB"
-word 087654321h
-word 04321dcbah

Before you use this appendix, read Chapter 12 to understand how to use the hex conversion utility.

Topic Page

C.1 Scenario 1: Building a Hex Conversion Command File for a Single 8-Bit EPROM..... 298

C.2 Scenario 2: Building a Hex Conversion Command File for 16-BIS Code.................. 302
C.3 Scenario 3: Building a Hex Conversion Command File for Two 8-Bit EPROMSs......... 305
SPRUHV6C-July 2014—-Revised July 2018 Hex Conversion Utility Examples 297

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Scenario 1: Building a Hex Conversion Command File for a Single 8-Bit EPROM www.ti.com

C.1 Scenario 1: Building a Hex Conversion Command File for a Single 8-Bit EPROM

Scenario 1 shows how to build the hex conversion command file for converting an object file for the
memory system shown in Figure C-1. In this system, there is one external 128K x 8-bit EPROM
interfacing with a TMS470 target processor.

Figure C-1. EPROM Memory System for Scenario 1

D

ARM CPU

128K 8
ROMO

Width: 32 bits V

ROM width: 8 bits

;\/—/

EPROM system memory width: 8 bits

A object file consists of blocks of memory (sections) with assigned memory locations. Typically, all
sections are not adjacent: there are holes between sections in the address space for which there is no
data. Scenario 1 shows how you can use the hex conversion utility's image mode to fill any holes before,
between, or after sections with a fill value.

For this scenario, the application code resides in the program memory (ROM) on the TMS470 CPU, but
the data tables used by this code reside in an off-chip EPROM.

The circuitry of the target board handles the access to the data; the native TMS470 address of 0x1000
accesses location 0x0 on the EPROM.

To satisfy the address requirements for the code, this scenario requires a linker command file that
allocates sections and memory as follows:

e The program/application code (represented in this scenario by the secA section shown in Example C-
1) must be linked so that its address space resides in the program memory (ROM) on the TMS470
CPU.

» To satisfy the condition that the data be loaded on the EPROM at address 0x0 but be referenced by
the application code at address 0x1000, secB (the section that contains the data for this application)
must be assigned a linker load address of 0x1000 so that all references to data in this section will be
resolved with respect to the TMS470 CPU address. In the hex conversion utility command file, the
paddr option must be used to burn the section of data at EPROM address 0x0. This value overrides
the section load address given by the linker.

Example C-1 shows the linker command file that resolves the addresses needed in the stated
specifications.

298 Hex Conversion Utility Examples SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Scenario 1: Building a Hex Conversion Command File for a Single 8-Bit EPROM

Example C-1. Linker Command File and Link Map for Scenario 1

/ /
/* Scenario 1 Link Command */
/* */
/* Usage: Inkpru <obj files...> -0 <out File> -m <map file> Ink32.cmd */
/* clpru <src files...> -z -0 <out file> -m <map Ffile> Ink32.cmd */
/* */
/* Description: This file is a sample command file that can be used */
/* for linking programs built with the TMS470 C */
/* compiler. Use it as a guideline; you may want to change */
/* the allocation scheme according to the size of your */
/* program and the memory layout of your target system. */
/* */
/* Notes: (1) You must specify the directory in which rts32.1ib is */
/* located. Either add a "-i<directory>" line to this */
/* file, or use the system environment variable C_DIR to */
/* specify a search path for libraries. */
/* */
/* @) If the runtime-support library you are using is not */
/* named rts32.1ib, be sure to use the correct name here. */
/ /

-m examplel._map
/* SPECIFY THE SYSTEM MEMORY MAP */

MEMORY
{
1_MEM : org = 0x00000000 len = 0x00000020 /* INTERRUPTS */
D_MEM : org = 0x00000020 len = 0x00010000 /* DATA MEMORY (RAM) */
P_MEM : org = 0x00010020 len = 0x00100000 /* PROGRAM MEMORY (ROM) */
b
/* SPECIFY THE SECTIONS ALLOCATION INTO MEMORY */
SECTIONS
{
secA: load = P_MEM
secB: load = 0x1000
3

You must create a hex conversion command file to generate a hex output with the correct addresses and

format for the EPROM programmer.

In the memory system outlined in Figure C-1, only the application data is stored on the EPROM; the data

resides in secB of the object file created by the linker. By default, the hex conversion utility converts all

initialized sections that appear in the object file. To prevent the conversion of the application code in secA,

a SECTIONS directive must be defined in the hex conversion command file to list explicitly the section(s)

to be converted. In this case, secB must be listed explicitly as the section to be converted.

The EPROM programmer in this scenario has the following system requirements:

e« The EPROM programmer loads only a complete ROM image. A complete ROM image is one in which
there is a contiguous address space (there are no holes in the addresses in the converted file), and
each address in the range contains a known value. Creating a complete ROM image requires the use
of the —image option and the ROMS directive.

— Using the —-image option causes the hex conversion utility to create an output file that has
contiguous addresses over the specified memory range and forces the utility to fill address spaces
that are not previously filled by raw data from sections defined in the input object file. By default,
the value used to fill the unused portions of the memory range is 0.

— Because the -image option operates over a known range of memory addresses, a ROMS directive
is needed to specify the origin and length of the memory for the EPROM.

» To burn the section of data at EPROM address 0x0, the paddr option must be used. This value
overrides the section load address given by the linker.

* In this scenario, the EPROM is 128K x 8 bits. Therefore, the memory addresses for the EPROM must
range from 0x0 to 0x20000.

SPRUHV6C-July 2014—-Revised July 2018 Hex Conversion Utility Examples 299

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Scenario 1: Building a Hex Conversion Command File for a Single 8-Bit EPROM www.ti.com

» Because the EPROM memory width is eight bits, the memwidth value must be set to 8.

» Because the physical width of the ROM device is eight bits, the romwidth value must be set to 8.
» Intel format must be used.

Since memwidth and romwidth have the same value, only one output file is generated (the number of

output files is determined by the ratio of memwidth to romwidth). The output file is named with the -0
option.

The hex conversion command file for Scenario 1 is shown in Example C-2. This command file uses the
following options to select the requirements of the system:

Option Description

-i Create Intel format

-image Generate a memory image

-map examplel.mxp Generate examplel.mxp as the map file of the conversion
-0 examplel.hex Name examplel.hex as the output file

-memwidth 8 Set EPROM system memory width to 8

-romwidth 8 Set physical ROM width to 8

Example C-2. Hex Conversion Command File for Scenario 1

/* Hex Conversion Command file for Scenario 1 */
a.out /* linked object file, input */
-1 /* Intel format */
-image
-map examplel._mxp /* Generate a map of the conversion */
-0 examplel._hex /* Resulting hex output file */
-memwidth 8 /* EPROM memory system width */
-romwidth 8 /* Physical width of ROM */
ROMS
{
EPROM: origin = 0x0, length = 0x20000
}
SECTIONS
{
secB: paddr = Ox0O /* Select only section, secB, for conversion */
3
300 Hex Conversion Utility Examples SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Scenario 1: Building a Hex Conversion Command File for a Single 8-Bit EPROM

Example C-3 shows the contents of the resulting map file (examplel.mxp). Figure C-2 shows the contents
of the resulting hex output file (examplel.hex). The hex conversion utility places the data tables, secB, at
address 0 and then fills the remainder of the address space with the default fill value of 0. For more
information about the Intel MCS-86 object format, see Figure 12-7.

Example C-3. Contents of Hex Map File examplel.mxp

PRU Hex Converter Version X.xX

INPUT FILE NAME: <a.out>
OUTPUT FORMAT: Intel

PHYSICAL MEMORY PARAMETERS
Default data width: 8
Default memory width: 8
Default output width: 8

OUTPUT TRANSLATION MAP

00000000. .0001fFFFFf Page=0 ROM Width=8 Memory Width=8 "EPROM"

OUTPUT FILES: examplel.hex [bO..b7]

CONTENTS: 00000000..00000007 Data Width=1 secB
00000007. .0001FFFF FILL = 00000000

Figure C-2. Contents of Hex Output File examplel.hex

Start character

Address secB data tables

[| | [l |
:20000000876543214321DCBA0096

:$20002000C0
:20004000A0

.

:20FFE001
:020000040001F<F—— Extended linear address record

:2000E0
:20002000CO

:20FFC00021
:20FFE001

:00000001FE
L|—' L|:| End-of-file record Checksum
Record type
Byte count
SPRUHV6C-July 2014—-Revised July 2018 Hex Conversion Utility Examples 301

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS

INSTRUMENTS
Scenario 2: Building a Hex Conversion Command File for 16-BIS Code www.ti.com
C.2 Scenario 2: Building a Hex Conversion Command File for 16-BIS Code

Scenario 2 shows how to build the hex conversion command file to generate the correct converted file for
the application code and data that will reside on a single 16-bit EPROM. The EPROM memory system for
this scenario is shown in Figure C-3. For this scenario, the TMS470 CPU operates with the T control bit
set, so the processor executes instructions in 16-BIS mode.

Figure C-3. EPROM Memory System for Scenario 2

ARM CPU

128K 16
ROMO
Width: 32 bits ;\/_/
ROM width: 16 bits
EPROM system memory width: 16 bits
For this scenario, the application code and data reside on the EPROM: the lower 64K words of EPROM
memory are dedicated to application code space and the upper 64K words are dedicated to the data
tables. The application code is loaded starting at address 0x0 on the EPROM but maps to the TMS470
CPU at address 0x3000. The data tables are loaded starting at address 0x1000 on the EPROM and map
to the TMS470 CPU address 0x20.
302 Hex Conversion Utility Examples SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Scenario 2: Building a Hex Conversion Command File for 16-BIS Code

Example C-4 shows the linker command file that resolves the addresses needed for the load on EPROM
and the TMS470 CPU access.

Example C-4. Linker Command File for Scenario 2

/ /
/* Scenario 2 Link Command */
/* */
/* Usage: Inkpru <obj files...> -0 <out file> -m <map file> Inkl6.cmd */
/* clpru <src files...> -z -0 <out file> -m <map file> Inkl6.cmd */
/* */
/* Description: This file is a sample command file that can be used */
/* for linking programs built with the TMS470 C */
/* compiler. Use it as a guideline; you may want to change */
/* the allocation scheme according to the size of your */
/* program and the memory layout of your target system. */
/* */
/* Notes: (1) You must specify the directory in which rtsl16.lib is */
/* located. Either add a "-i<directory>" line to this */
/* file, or use the system environment variable C_DIR to */
/* specify a search path for libraries. */
/* */
/*) If the runtime-support library you are using is not */
/* named rtsl6.lib, be sure to use the correct name here. */
/ /

-m example2.map

/* SPECIFY THE SYSTEM MEMORY MAP */

MEMORY

{
1_MEM : org = 0x00000000 len = 0x00000020 /* INTERRUPTS */
D_MEM : org = 0x00000020 len = 0x00010000 /* DATA MEMORY (RAM) */
P_MEM : org = 0x00010020 len = 0x00100000 /* PROGRAM MEMORY (ROM) */

3

/* SPECIFY THE SECTIONS ALLOCATION INTO MEMORY */

SECTIONS
{
secA: load = 0x3000
secB: load = 0x20
3
You must create a hex conversion command file to generate a hex output with the correct addresses and
format for the EPROM programmer. The EPROM programmer in this scenario has the following system
requirements:
* Because the EPROM memory width is 16 bits, the memwidth value must be set to 16.
» Because the physical width of the ROM device is 16 bits, the romwidth value must be set to 16.
» Intel format must be used.
The EPROM programmer does not require a ROM image, so the addresses in the input hex output file do
not need to be contiguous.
Because memwidth and romwidth have the same value, only one output file is generated (the number of
output files is determined by the ratio of memwidth to romwidth). The output file is named with the -0
option.
A ROMS directive is used in this scenario since the paddr option is used to relocate both secA and secB.
SPRUHV6C-July 2014—-Revised July 2018 Hex Conversion Utility Examples 303

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Scenario 2: Building a Hex Conversion Command File for 16-BIS Code www.ti.com

The hex conversion command file for Scenario 2 is shown in Example C-5. This command file uses the
following options to select the requirements of the system:

Option Description

-i Create Intel format

-map example2.mxp Generate example2.mxp as the map file of the conversion
-0 example2.hex Name example2.hex as the output file

-memwidth 8 Set EPROM system memory width to 8

-romwidth 8 Set physical ROM width to 8

Example C-5. Hex Conversion Command File for Scenario 2

/* Hex Conversion Command file for Scenario 2 */
a.out /* linked object file, input */
-1 /* Intel format */

/* The following two options are optional */
-map example2._mxp /* Generate a map of the conversion */
-0 example2._hex /* Resulting Hex Output file */

/* Specify EPROM system Memory Width and Physical ROM width */
-memwidth 16 /* EPROM memory system width */
-romwidth 16 /* Physical width of ROM */

ROMS
{

}

SECTIONS
{

EPROM: origin = 0x0, length = 0x20000

secA: paddr = 0x0
secB: paddr = 0x1000

}

Example C-6 shows the contents of the resulting map file (example2.mxp). Figure C-4 shows the contents
of the resulting hex output file (example2.hex).

Example C-6. Contents of Hex Map File example2.mxp

PRU Hex Converter Version X.XX

INPUT FILE NAME: <a.out>
OUTPUT FORMAT: Intel

PHYSICAL MEMORY PARAMETERS
Default data width: 8
Default memory width: 16
Default output width: 16

OUTPUT TRANSLATION MAP

00000000. .0001FFFFf Page=0 ROM Width=16 Memory Width=16 "EPROM"

OUTPUT FILES: example2._hex [bO..bl5]

CONTENTS: 00000000..00000003 Data Width=1 secA
00001000..00001003 Data Width=1 secB

304 Hex Conversion Utility Examples SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Scenario 3: Building a Hex Conversion Command File for Two 8-Bit EPROMs

Figure C-4. Contents of Hex Output File example2.hex

Start character

Address Data

T ‘ 1T ‘ 1
:0800000012345678ABCD123426
:08100000876543214321DCBAYE

:00000001FF Y Ghecksum
‘T‘ o End-of-file record
Record type
Byte count

C.3 Scenario 3: Building a Hex Conversion Command File for Two 8-Bit EPROMs

Scenario 3 shows how to build the hex conversion command file for converting a object file for the
memory system shown in Figure C-5. In this system, there are two external 64K x 16-bit EPROMs
interfacing with the TMS470 target processor. The application code and data will be burned on the
EPROM starting at address 0x20. The application code will be burned first, followed by the data tables.

Figure C-5. EPROM Memory System for Scenario 3

Upper 16 bits
Lower 16 bits

ARM CPU
64K 16 64K 16
ROMO ROM1
Width: 32 bits
V V
ROM width: ROM width:
16 bits 16 bits
V

EPROM system memory width: 32 bits

In this scenario, the EPROM load address for the application code and for the data also corresponds to
the TMS470 CPU address that accesses the code and data. Therefore, only a load address needs to be
specified.

SPRUHV6C—-July 2014—Revised July 2018 Hex Conversion Utility Examples 305
Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Scenario 3: Building a Hex Conversion Command File for Two 8-Bit EPROMs www.ti.com

Example C-7 shows the linker command file for this scenario.

Example C-7. Linker Command File for Scenario 3

/ /
/* Scenario 3 Link Command */
/* */
/* Usage: Inkpru <obj files...> -0 <out file> -m <map file> Ink32.cmd */
/* clpru <src files...> -z -0 <out file> -m <map file> Ink32.cmd */
/* */
/* Description: This file is a sample command file that can be used */
/* for linking programs built with the TMS470 C */
/* compiler. Use it as a guideline; you may want to change */
/* the allocation scheme according to the size of your */
/* program and the memory layout of your target system. */
/* */
/* Notes: (1) You must specify the directory in which rts32.1ib is */
/* located. Either add a "-i<directory>" line to this */
/* file, or use the system environment variable C_DIR to */
/* specify a search path for libraries. */
/* */
/* @) If the runtime-support library you are using is not */
/* named rts32.1ib, be sure to use the correct name here. */
/ /

-m example3.map

/* SPECIFY THE SYSTEM MEMORY MAP */

MEMORY

{
1_MEM : org = 0x00000000 len = 0x00000020 /* INTERRUPTS */
D_MEM : org = 0x00000020 len = 0x00010000 /* DATA MEMORY (RAM) */
P_MEM : org = 0x00010020 len = 0x00100000 /* PROGRAM MEMORY (ROM) */

3

/* SPECIFY THE SECTIONS ALLOCATION INTO MEMORY */

SECTIONS
{
secA: load = 0x20
secB: load = D_MEM
b
You must create a hex conversion command file to generate a hex output with the correct addresses and
format for the EPROM programmer.
The EPROM programmer in this scenario has the following system requirements:
* In the memory system outlined in Figure C-5, the EPROM system memory width is 32 bits because
each of the physical ROMs provides 16 bits of a 32-bit word. Because the EPROM system memory
width is 32 bits, the memwidth value must be set to 32.
» Because the width of each of the physical ROMs is 16 bits, the romwidth value must be set to 16.
* Intel format must be used.
With a memwidth of 32 and a romwidth of 16, two output files are generated by the hex conversion utility
(the number of files is determined by the ratio of memwidth to romwidth). In previous scenarios, the output
filename was specified with the -o option. Another way to specify the output filename is to use the files
keyword within a ROMS directive. When you use -o or the files keyword, the first output filename always
contains the low-order bytes of the word.
306 Hex Conversion Utility Examples SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com

Scenario 3: Building a Hex Conversion Command File for Two 8-Bit EPROMs

The hex conversion command file for Scenario 3 is shown in Example C-8. This command file uses the
following options to select the requirements of the system:

Description

Option

-i

-map example3.mxp
-memwidth 32
-romwidth 16

Create Intel format

Generate example3.mxp as the map file of the conversion
Set EPROM system memory width to 32

Set physical ROM width to 16

The files keyword is used within the ROMS directive to specify the output filenames.

Example C-8. Hex Conversion Command File for Scenario 3

/* Hex Conversion Command
a.out /*
-1 /*
/* Optional Commands */
-map example3.mxp /*
/* Specify EPROM system
-memwidth 32 /*
-romwidth 16 /*
ROMS
{

file for Scenario 3 */
linked object file, input */
Intel format */

Generate a map of the conversion */
memory width and physical ROM width */
EPROM memory system width */

Physical width of ROM */

EPROM: org = 0x0, length = 0x20000
files={ lowerl6.bit, upperl6.bit }

}

Example C-9 shows the contents of the resulting map file (example3.mxp).

Example C-9. Contents of Hex Map File example3.mxp

PRU Hex Converter

Version X.xX

Tue Sep 19 07:41:28 1995

INPUT FILE NAME: <a.out>
OUTPUT FORMAT: Intel

PHYSICAL MEMORY PARAMETERS

Default data width:
Default memory width:
Default output width:

OUTPUT TRANSLATION MAP

8
32
16

OUTPUT FILES: lowerl6.bit [bO..bl5]
upperl6.bit [b16..b31]

CONTENTS: 00000020..00000021 Data Width=1 secA
00000028..00000029 Data Width=1 secB

SPRUHV6C-July 2014—-Revised July 2018
Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

Hex Conversion Utility Examples

307

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Scenario 3: Building a Hex Conversion Command File for Two 8-Bit EPROMs www.ti.com

The contents of the output files lower16.bit and upperl16.bit are shown in Figure C-6. The first image
shows the lower16.bit file, which stores the low-order 16 bits of the 32-bit output word. The second image
shows the upper16.bit files, which stores the upper 16 bits.

Figure C-6. Contents of Hex Output File

Start character
Ad‘dress Dz‘ata

[[

:0400200056781234C8
:040028004321DCBADA
:00000001FF Checksum
T a8 End-of-file record
Record type
Byte count
Start character
Address Data
T | 1T ‘
:040020001234ABCD1E
:040028008765432184
:00000001FF % Checksum
T . End-of-file record
Record type
Byte count
308 Hex Conversion Utility Examples SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

Appendix D
I -{IE)S(’?I?UMENTS SPRUHV6C—July 2014—Revised July 2018

Glossary

D.1 Terminology

ABI — Application binary interface.
absolute address — An address that is permanently assigned to a PRU memory location.

absolute constant expression — An expression that does not refer to any external symbols or any
registers or memory reference. The value of the expression must be knowable at assembly time.

absolute lister — A debugging tool that allows you to create assembler listings that contain absolute
addresses.

address constant expression — A symbol with a value that is an address plus an addend that is an
absolute constant expression with an integer value.

alignment — A process in which the linker places an output section at an address that falls on an n-byte
boundary, where n is a power of 2. You can specify alignment with the SECTIONS linker directive.

allocation — A process in which the linker calculates the final memory addresses of output sections.

ANSI — American National Standards Institute; an organization that establishes standards voluntarily
followed by industries.

archive library — A collection of individual files grouped into a single file by the archiver.

archiver — A software program that collects several individual files into a single file called an archive
library. With the archiver, you can add, delete, extract, or replace members of the archive library.

ASCIl — American Standard Code for Information Interchange; a standard computer code for
representing and exchanging alphanumeric information.

assembler — A software program that creates a machine-language program from a source file that
contains assembly language instructions, directives, and macro definitions. The assembler
substitutes absolute operation codes for symbolic operation codes and absolute or relocatable
addresses for symbolic addresses.

assembly-time constant — A symbol that is assigned a constant value with the .set directive.

big endian — An addressing protocol in which bytes are numbered from left to right within a word. More
significant bytes in a word have lower numbered addresses. Endian ordering is hardware-specific
and is determined at reset. See also little endian

binding — A process in which you specify a distinct address for an output section or a symbol.
block — A set of statements that are grouped together within braces and treated as an entity.

.bss section — One of the default object file sections. You use the assembler .bss directive to reserve a
specified amount of space in the memory map that you can use later for storing data. The .bss
section is uninitialized.

byte — Per ANSI/ISO C, the smallest addressable unit that can hold a character.

C/C++ compiler — A software program that translates C source statements into assembly language
source statements.

SPRUHV6C-July 2014—-Revised July 2018 Glossary 309

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Terminology www.ti.com

command file — A file that contains options, filenames, directives, or commands for the linker or hex
conversion utility.

comment — A source statement (or portion of a source statement) that documents or improves
readability of a source file. Comments are not compiled, assembled, or linked; they have no effect
on the object file.

compiler program — A utility that lets you compile, assemble, and optionally link in one step. The
compiler runs one or more source modules through the compiler (including the parser, optimizer,
and code generator), the assembler, and the linker.

conditional processing — A method of processing one block of source code or an alternate block of
source code, according to the evaluation of a specified expression.

configured memory — Memory that the linker has specified for allocation.
constant — A type whose value cannot change.
constant expression — An expression that does not in any way refer to a register or memory reference.

cross-reference lister — A utility that produces an output file that lists the symbols that were defined,
what file they were defined in, what reference type they are, what line they were defined on, which
lines referenced them, and their assembler and linker final values. The cross-reference lister uses
linked object files as input.

cross-reference listing — An output file created by the assembler that lists the symbols that were
defined, what line they were defined on, which lines referenced them, and their final values.

.data section — One of the default object file sections. The .data section is an initialized section that
contains initialized data. You can use the .data directive to assemble code into the .data section.

directives — Special-purpose commands that control the actions and functions of a software tool (as
opposed to assembly language instructions, which control the actions of a device).

DWARF — A standardized debugging data format that was originally designed along with ELF, although it
is independent of the object file format.

EABI — An embedded application binary interface (ABI) that provides standards for file formats, data
types, and more.

ELF — Executable and linking format; a system of object files configured according to the System V
Application Binary Interface specification.

emulator — A hardware development system that duplicates the PRU operation.
entry point — A point in target memory where execution starts.

environment variable — A system symbol that you define and assign to a string. Environmental
variables are often included in Windows batch files or UNIX shell scripts such as .cshrc or .profile.

epilog — The portion of code in a function that restores the stack and returns.
executable module — A linked object file that can be executed in a target system.

expression — A constant, a symbol, or a series of constants and symbols separated by arithmetic
operators.

external symbol — A symbol that is used in the current program module but defined or declared in a
different program module.

field — For the PRU, a software-configurable data type whose length can be programmed to be any
value in the range of 1-32 bits.

global symbol — A symbol that is either defined in the current module and accessed in another, or
accessed in the current module but defined in another.

310

Glossary SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

I

TEXAS
INSTRUMENTS

www.ti.com Terminology

GROUP — An option of the SECTIONS directive that forces specified output sections to be allocated
contiguously (as a group).

hex conversion utility — A utility that converts object files into one of several standard ASCII
hexadecimal formats, suitable for loading into an EPROM programmer.

high-level language debugging — The ability of a compiler to retain symbolic and high-level language
information (such as type and function definitions) so that a debugging tool can use this
information.

hole — An area between the input sections that compose an output section that contains no code.
identifier— Names used as labels, registers, and symbols.
immediate operand — An operand whose value must be a constant expression.

incremental linking — Linking files in several passes. Incremental linking is useful for large applications,
because you can partition the application, link the parts separately, and then link all of the parts
together.

initialization at load time — An autoinitialization method used by the linker when linking C/C++ code.
The linker uses this method when you invoke it with the --ram_model link option. This method
initializes variables at load time instead of run time.

initialized section — A section from an object file that will be linked into an executable module.
input section — A section from an object file that will be linked into an executable module.

ISO — International Organization for Standardization; a worldwide federation of national standards
bodies, which establishes international standards voluntarily followed by industries.

label — A symbol that begins in column 1 of an assembler source statement and corresponds to the
address of that statement. A label is the only assembler statement that can begin in column 1.

linker — A software program that combines object files to form an object module that can be allocated
into system memory and executed by the device.

listing file — An output file, created by the assembler, that lists source statements, their line numbers,
and their effects on the section program counter (SPC).

literal constant — A value that represents itself. It may also be called a literal or an immediate value.

little endian — An addressing protocol in which bytes are numbered from right to left within a word. More
significant bytes in a word have higher numbered addresses. Endian ordering is hardware-specific
and is determined at reset. See also big endian

loader — A device that places an executable module into system memory.
macro — A user-defined routine that can be used as an instruction.
macro call — The process of invoking a macro.

macro definition — A block of source statements that define the name and the code that make up a
macro.

macro expansion — The process of inserting source statements into your code in place of a macro call.

macro library — An archive library composed of macros. Each file in the library must contain one macro;
its name must be the same as the macro name it defines, and it must have an extension of .asm.

map file — An output file, created by the linker, that shows the memory configuration, section
composition, section allocation, symbol definitions and the addresses at which the symbols were
defined for your program.

member — The elements or variables of a structure, union, archive, or enumeration.

SPRUHV6C-July 2014—-Revised July 2018 Glossary 311
Submit Documentation Feedback

Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

Terminology www.ti.com

memory map — A map of target system memory space that is partitioned into functional blocks.

memory reference operand — An operand that refers to a location in memory using a target-specific
syntax.

mnemonic — An instruction name that the assembler translates into machine code.

model statement — Instructions or assembler directives in a macro definition that are assembled each
time a macro is invoked.

named section — An initialized section that is defined with a .sect directive.
object file — An assembled or linked file that contains machine-language object code.
object library — An archive library made up of individual object files.

object module — A linked, executable object file that can be downloaded and executed on a target
system.

operand — An argument of an assembly language instruction, assembler directive, or macro directive
that supplies information to the operation performed by the instruction or directive.

optimizer — A software tool that improves the execution speed and reduces the size of C programs.

options — Command-line parameters that allow you to request additional or specific functions when you
invoke a software tool.

output module — A linked, executable object file that is downloaded and executed on a target system.
output section — A final, allocated section in a linked, executable module.

partial linking — Linking files in several passes. Incremental linking is useful for large applications
because you can partition the application, link the parts separately, and then link all of the parts
together.

guiet run — An option that suppresses the normal banner and the progress information.
raw data — Executable code or initialized data in an output section.
register operand — A special pre-defined symbol that represents a CPU register.

relocatable constant expression— An expression that refers to at least one external symbol, register, or
memory location. The value of the expression is not known until link time.

relocation — A process in which the linker adjusts all the references to a symbol when the symbol's
address changes.

ROM width — The width (in bits) of each output file, or, more specifically, the width of a single data value
in the hex conversion utility file. The ROM width determines how the utility partitions the data into
output files. After the target words are mapped to memory words, the memory words are broken
into one or more output files. The number of output files is determined by the ROM width.

run address — The address where a section runs.

run-time-support library — A library file, rts.src, that contains the source for the run time-support
functions.

section — A relocatable block of code or data that ultimately will be contiguous with other sections in the
memory map.

section program counter (SPC) — An element that keeps track of the current location within a section;
each section has its own SPC.

sign extend — A process that fills the unused MSBs of a value with the value's sign bit.

source file — A file that contains C/C++ code or assembly language code that is compiled or assembled
to form an object file.

312

Glossary SPRUHV6C-July 2014—-Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

13 TEXAS
INSTRUMENTS

www.ti.com Terminology

static variable — A variable whose scope is confined to a function or a program. The values of static
variables are not discarded when the function or program is exited; their previous value is resumed
when the function or program is reentered.

storage class — An entry in the symbol table that indicates how to access a symbol.

string table — A table that stores symbol names that are longer than eight characters (symbol hames of
eight characters or longer cannot be stored in the symbol table; instead they are stored in the string
table). The name portion of the symbol's entry points to the location of the string in the string table.

structure — A collection of one or more variables grouped together under a single name.

subsection — A relocatable block of code or data that ultimately will occupy continuous space in the
memory map. Subsections are smaller sections within larger sections. Subsections give you tighter
control of the memory map.

symbol — A name that represents an address or a value.
symbolic constant — A symbol with a value that is an absolute constant expression.

symbolic debugging — The ability of a software tool to retain symbolic information that can be used by a
debugging tool such as an emulator.

tag — An optional type name that can be assigned to a structure, union, or enumeration.
target memory — Physical memory in a system into which executable object code is loaded.

.text section — One of the default object file sections. The .text section is initialized and contains
executable code. You can use the .text directive to assemble code into the .text section.

unconfigured memory — Memory that is not defined as part of the memory map and cannot be loaded
with code or data.

uninitialized section — A obiject file section that reserves space in the memory map but that has no
actual contents. These sections are built with the .bss and .usect directives.

UNION — An option of the SECTIONS directive that causes the linker to allocate the same address to
multiple sections.

union — A variable that can hold objects of different types and sizes.
unsigned value — A value that is treated as a nonnegative number, regardless of its actual sign.
variable — A symbol representing a quantity that can assume any of a set of values.

well-defined expression — A term or group of terms that contains only symbols or assembly-time
constants that have been defined before they appear in the expression.

word — A 32-bit addressable location in target memory

SPRUHV6C-July 2014—-Revised July 2018 Glossary 313

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

Appendix E
I ’{‘E)S(’?IEUMENTS SPRUHV6C—July 2014—Revised July 2018

Revision History

E.1 Recent Revisions

This table lists significant changes made to this document. The left column identifies the first version of
this document in which a particular change appeared.

Version

Added Chapter Location Additions / Modifications / Deletions
Archiver and | Section 7.5.2 and - L
SPRUHV6C Linker Section 8.4.10 Added --silicon_version=4 support.
Section 8.4
. . ’ Added the --ecc=on linker option, which enables ECC generation. Note that
SPRUHV6C | Linker Section 8.4.11, and g
Section 8.5.9 ECC generation is now off by default.
. . Added information about the CREGISTER specifier, which can be used within
SPRUHV6C | Linker Section 8.5.4.2 the MEMORY directive in a linker command file.
SPRUHV6EC | Linker Section 8.5.7.3 Added linker syntax for combining an initialized section with uninitialized

sections.

Previous Revisions:

SPRUHV6B Assembl_er Sect!on 4.3 and Added the --code_address_listing_unit command-line option.
Description Section 4.10
Hex . . .
) Section 12.2.1 and | Added the --array option, which causes the array output format to be
SPRUHV6B Cc_;nversmn Section 12.11 generated.
Utility
Object Secti k symbols can be declared usi bly or the link d file. Th
Modules ection 2.6.2, Weak symbols can be declared using assembly or the linker command file. The
SPRUHV6B Directive‘s .weak topic, and linker removes weak symbols from the output file if the symbol is not required
and Linker Section 8.6.2 to resolve any references.
SPRUHV6B | Linker Section 8.4.19 éstciigr? modules as a filter for the --mapfile_contents linker command line
Section 8.4.2,
SPRUHV6A | Linker Section 8.5.10.6, Added information about referencing linker symbols.
and Section 8.6.1
SPRUHV6A | Linker Section 8.4.10 Added a list of the linker's predefined macros.
314 Revision History SPRUHV6C-July 2014—Revised July 2018

Submit Documentation Feedback
Copyright © 2014-2018, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUHV6C

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated (‘TI”) technical, application or other design advice, services or information, including, but not limited to,
reference designs and materials relating to evaluation modules, (collectively, “Tl Resources”) are intended to assist designers who are
developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you
(individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of
this Notice.

TI's provision of Tl Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for Tl
products, and no additional obligations or liabilities arise from TI providing such Tl Resources. Tl reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your
applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications
(and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You
represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1)
anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that
might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you
will thoroughly test such applications and the functionality of such Tl products as used in such applications. Tl has not conducted any
testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include
the Tl product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO
ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TlI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED “AS I1S” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT
LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF
DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL,
COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR
ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify Tl and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-
compliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, Tl products and services.
These include; without limitation, TI's standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation
modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated

http://www.ti.com/sc/docs/stdterms.htm
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/sc/docs/sampterms.htm

	Table of Contents
	Preface
	1 Introduction to the Software Development Tools
	1.1 Software Development Tools Overview
	1.2 Tools Descriptions

	2 Introduction to Object Modules
	2.1 Object File Format Specification
	2.2 Executable Object Files
	2.3 Introduction to Sections
	2.3.1 Special Section Names

	2.4 How the Assembler Handles Sections
	2.4.1 Uninitialized Sections
	2.4.2 Initialized Sections
	2.4.3 User-Named Sections
	2.4.4 Current Section
	2.4.5 Section Program Counters
	2.4.6 Subsections
	2.4.7 Using Sections Directives

	2.5 How the Linker Handles Sections
	2.5.1 Combining Input Sections
	2.5.2 Placing Sections

	2.6 Symbols
	2.6.1 External Symbols
	2.6.2 Weak Symbols
	2.6.3 The Symbol Table

	2.7 Symbolic Relocations
	2.8 Loading a Program

	3 Program Loading and Running
	3.1 Loading
	3.1.1 Load and Run Addresses
	3.1.2 Bootstrap Loading
	3.1.2.1 Boot, Load, and Run Addresses
	3.1.2.2 Primary Bootloader
	3.1.2.3 Secondary Bootloader
	3.1.2.4 Boot Table
	3.1.2.5 Bootloader Routine

	3.2 Entry Point
	3.3 Run-Time Initialization
	3.3.1  The _c_int00 Function
	3.3.2 Variable Initialization
	3.3.3 Copy Tables
	3.3.3.1 BINIT
	3.3.3.2 CINIT

	3.4 Arguments to main
	3.5 Run-Time Relocation
	3.6 Additional Information

	4 Assembler Description
	4.1 Assembler Overview
	4.2 The Assembler's Role in the Software Development Flow
	4.3 Invoking the Assembler
	4.4 Naming Alternate Directories for Assembler Input
	4.4.1 Using the --include_path Assembler Option
	4.4.2 Using the PRU_A_DIR Environment Variable

	4.5 Source Statement Format
	4.5.1 Label Field
	4.5.2 Mnemonic Field
	4.5.3 Operand Field
	4.5.3.1 Immediate Values as Operands

	4.5.4 Comment Field

	4.6 Literal Constants
	4.6.1 Integer Literals
	4.6.1.1 Binary Integer Literals
	4.6.1.2 Octal Integer Literals
	4.6.1.3 Decimal Integer Literals
	4.6.1.4 Hexadecimal Integer Literals
	4.6.1.5 Character Literals

	4.6.2 Character String Literals
	4.6.3 Floating-Point Literals

	4.7 Assembler Symbols
	4.7.1 Identifiers
	4.7.2 Labels
	4.7.3 Local Labels
	4.7.4 Symbolic Constants
	4.7.5 Defining Symbolic Constants (--asm_define Option)
	4.7.6 Predefined Symbolic Constants
	4.7.7 Registers
	4.7.8 Substitution Symbols

	4.8 Expressions
	4.8.1 Mathematical and Logical Operators
	4.8.2 Relational Operators and Conditional Expressions
	4.8.3 Well-Defined Expressions
	4.8.4 Relocatable Symbols and Legal Expressions
	4.8.5 Expression Examples

	4.9 Built-in Functions and Operators
	4.9.1 Built-In Math and Trigonometric Functions

	4.10 Source Listings
	4.11 Debugging Assembly Source
	4.12 Cross-Reference Listings

	5 Assembler Directives
	5.1 Directives Summary
	5.2 Directives that Define Sections
	5.3 Directives that Initialize Values
	5.4 Directives that Perform Alignment and Reserve Space
	5.5 Directives that Format the Output Listings
	5.6 Directives that Reference Other Files
	5.7 Directives that Enable Conditional Assembly
	5.8 Directives that Define Union or Structure Types
	5.9 Directives that Define Enumerated Types
	5.10 Directives that Define Symbols at Assembly Time
	5.11 Miscellaneous Directives
	5.12 Directives Reference

	6 Macro Language Description
	6.1 Using Macros
	6.2 Defining Macros
	6.3 Macro Parameters/Substitution Symbols
	6.3.1 Directives That Define Substitution Symbols
	6.3.2 Built-In Substitution Symbol Functions
	6.3.3 Recursive Substitution Symbols
	6.3.4 Forced Substitution
	6.3.5 Accessing Individual Characters of Subscripted Substitution Symbols
	6.3.6 Substitution Symbols as Local Variables in Macros

	6.4 Macro Libraries
	6.5 Using Conditional Assembly in Macros
	6.6 Using Labels in Macros
	6.7 Producing Messages in Macros
	6.8 Using Directives to Format the Output Listing
	6.9 Using Recursive and Nested Macros
	6.10 Macro Directives Summary

	7 Archiver Description
	7.1 Archiver Overview
	7.2 The Archiver's Role in the Software Development Flow
	7.3 Invoking the Archiver
	7.4 Archiver Examples
	7.5 Library Information Archiver Description
	7.5.1 Invoking the Library Information Archiver
	7.5.2 Library Information Archiver Example
	7.5.3 Listing the Contents of an Index Library
	7.5.4 Requirements

	8 Linker Description
	8.1 Linker Overview
	8.2 The Linker's Role in the Software Development Flow
	8.3 Invoking the Linker
	8.4 Linker Options
	8.4.1 Wildcards in File, Section, and Symbol Patterns
	8.4.2 Specifying C/C++ Symbols with Linker Options
	8.4.3 Relocation Capabilities (--absolute_exe and --relocatable Options)
	8.4.3.1 Producing an Absolute Output Module (--absolute_exe option)
	8.4.3.2 Producing a Relocatable Output Module (--relocatable option)
	8.4.3.3 Producing an Executable, Relocatable Output Module (-ar Option)

	8.4.4 Allocate Memory for Use by the Loader to Pass Arguments (--arg_size Option)
	8.4.5 Compression (--cinit_compression and --copy_compression Option)
	8.4.6 Compress DWARF Information (--compress_dwarf Option)
	8.4.7 Control Linker Diagnostics
	8.4.8 Automatic Library Selection (--disable_auto_rts Option)
	8.4.9 Do Not Remove Unused Sections (--unused_section_elimination Option)
	8.4.10 Linker Command File Preprocessing (--disable_pp, --define and --undefine Options)
	8.4.11 Error Correcting Code Testing (--ecc Options)
	8.4.12 Define an Entry Point (--entry_point Option)
	8.4.13 Set Default Fill Value (--fill_value Option)
	8.4.14 Define Heap Size (--heap_size Option)
	8.4.15 Hiding Symbols
	8.4.16 Alter the Library Search Algorithm (--library Option, --search_path Option, and PRU_C_DIR Environment Variable)
	8.4.16.1 Name an Alternate Library Directory (--search_path Option)
	8.4.16.2 Name an Alternate Library Directory (PRU_C_DIR Environment Variable)
	8.4.16.3 Exhaustively Read and Search Libraries (--reread_libs and --priority Options)

	8.4.17 Change Symbol Localization
	8.4.17.1 Make All Global Symbols Static (--make_static Option)

	8.4.18 Create a Map File (--map_file Option)
	8.4.19 Managing Map File Contents (--mapfile_contents Option)
	8.4.20 Disable Name Demangling (--no_demangle)
	8.4.21 Merging of Symbolic Debugging Information
	8.4.22 Strip Symbolic Information (--no_symtable Option)
	8.4.23 Name an Output Module (--output_file Option)
	8.4.24 Prioritizing Function Placement (--preferred_order Option)
	8.4.25 C Language Options (--ram_model and --rom_model Options)
	8.4.26 Retain Discarded Sections (--retain Option)
	8.4.27 Create an Absolute Listing File (--run_abs Option)
	8.4.28 Scan All Libraries for Duplicate Symbol Definitions (--scan_libraries)
	8.4.29 Define Stack Size (--stack_size Option)
	8.4.30 Enforce Strict Compatibility (--strict_compatibility Option)
	8.4.31 Mapping of Symbols (--symbol_map Option)
	8.4.32 Introduce an Unresolved Symbol (--undef_sym Option)
	8.4.33 Display a Message When an Undefined Output Section Is Created (--warn_sections)
	8.4.34 Generate XML Link Information File (--xml_link_info Option)
	8.4.35 Zero Initialization (--zero_init Option)

	8.5 Linker Command Files
	8.5.1 Reserved Names in Linker Command Files
	8.5.2 Constants in Linker Command Files
	8.5.3 Accessing Files and Libraries from a Linker Command File
	8.5.4 The MEMORY Directive
	8.5.4.1 Default Memory Model
	8.5.4.2 MEMORY Directive Syntax
	8.5.4.3 Expressions and Address Operators

	8.5.5 The SECTIONS Directive
	8.5.5.1 SECTIONS Directive Syntax
	8.5.5.2 Section Allocation and Placement
	8.5.5.2.1 Binding
	8.5.5.2.2 Named Memory
	8.5.5.2.3 Controlling Placement Using The HIGH Location Specifier
	8.5.5.2.4 Alignment and Blocking
	8.5.5.2.5 Alignment With Padding

	8.5.5.3 Specifying Input Sections
	8.5.5.4 Using Multi-Level Subsections
	8.5.5.5 Specifying Library or Archive Members as Input to Output Sections
	8.5.5.6 Allocation Using Multiple Memory Ranges
	8.5.5.7 Automatic Splitting of Output Sections Among Non-Contiguous Memory Ranges

	8.5.6 Placing a Section at Different Load and Run Addresses
	8.5.6.1 Specifying Load and Run Addresses

	8.5.7 Using GROUP and UNION Statements
	8.5.7.1 Grouping Output Sections Together
	8.5.7.2 Overlaying Sections With the UNION Statement
	8.5.7.3 Using Memory for Multiple Purposes
	8.5.7.4 Nesting UNIONs and GROUPs
	8.5.7.5 Checking the Consistency of Allocators
	8.5.7.6 Naming UNIONs and GROUPs

	8.5.8 Special Section Types (DSECT, COPY, NOLOAD, and NOINIT)
	8.5.9 Configuring Error Correcting Code (ECC) with the Linker
	8.5.9.1 Using the ECC Specifier in the Memory Map
	8.5.9.2 Using the ECC Directive
	8.5.9.3 Using the VFILL Specifier in the Memory Map

	8.5.10 Assigning Symbols at Link Time
	8.5.10.1 Syntax of Assignment Statements
	8.5.10.2 Assigning the SPC to a Symbol
	8.5.10.3 Assignment Expressions
	8.5.10.4 Symbols Automatically Defined by the Linker
	8.5.10.5 Why the Dot Operator Does Not Always Work
	8.5.10.6 Address and Dimension Operators
	8.5.10.6.1 Input Items
	8.5.10.6.2 Output Section
	8.5.10.6.3 GROUPs
	8.5.10.6.4 UNIONs

	8.5.11 Creating and Filling Holes
	8.5.11.1 Initialized and Uninitialized Sections
	8.5.11.2 Creating Holes
	8.5.11.3 Filling Holes
	8.5.11.4 Explicit Initialization of Uninitialized Sections

	8.6 Linker Symbols
	8.6.1 Using Linker Symbols in C/C++ Applications
	8.6.2 Declaring Weak Symbols
	8.6.3 Resolving Symbols with Object Libraries

	8.7 Default Placement Algorithm
	8.7.1 How the Allocation Algorithm Creates Output Sections
	8.7.2 Reducing Memory Fragmentation

	8.8 Linker-Generated Copy Tables
	8.8.1 Using Copy Tables for Boot Loading
	8.8.2 Using Built-in Link Operators in Copy Tables
	8.8.3 Overlay Management Example
	8.8.4 Generating Copy Tables With the table() Operator
	8.8.4.1 The table() Operator
	8.8.4.2 Boot-Time Copy Tables
	8.8.4.3 Using the table() Operator to Manage Object Components
	8.8.4.4 Linker-Generated Copy Table Sections and Symbols
	8.8.4.5 Splitting Object Components and Overlay Management

	8.8.5 Compression
	8.8.5.1 Compressed Copy Table Format
	8.8.5.2 Compressed Section Representation in the Object File
	8.8.5.3 Compressed Data Layout
	8.8.5.4 Run-Time Decompression
	8.8.5.5 Compression Algorithms

	8.8.6 Copy Table Contents
	8.8.7 General Purpose Copy Routine

	8.9 Partial (Incremental) Linking
	8.10 Linking C/C++ Code
	8.10.1 Run-Time Initialization
	8.10.2 Object Libraries and Run-Time Support
	8.10.3 Setting the Size of the Stack and Heap Sections
	8.10.4 Initializing and AutoInitialzing Variables at Run Time

	8.11 Linker Example

	9 Absolute Lister Description
	9.1 Producing an Absolute Listing
	9.2 Invoking the Absolute Lister
	9.3 Absolute Lister Example

	10 Cross-Reference Lister Description
	10.1 Producing a Cross-Reference Listing
	10.2 Invoking the Cross-Reference Lister
	10.3 Cross-Reference Listing Example

	11 Object File Utilities
	11.1 Invoking the Object File Display Utility
	11.2 Invoking the Disassembler
	11.3 Invoking the Name Utility
	11.4 Invoking the Strip Utility

	12 Hex Conversion Utility Description
	12.1 The Hex Conversion Utility's Role in the Software Development Flow
	12.2 Invoking the Hex Conversion Utility
	12.2.1 Invoking the Hex Conversion Utility From the Command Line
	12.2.2 Invoking the Hex Conversion Utility With a Command File

	12.3 Linking with an ARM Executable
	12.4 Understanding Memory Widths
	12.4.1 Target Width
	12.4.2 Specifying the Memory Width
	12.4.3 Partitioning Data Into Output Files

	12.5 The ROMS Directive
	12.5.1 When to Use the ROMS Directive
	12.5.2 An Example of the ROMS Directive

	12.6 The SECTIONS Directive
	12.7 The Load Image Format (--load_image Option)
	12.7.1 Load Image Section Formation
	12.7.2 Load Image Characteristics

	12.8 Excluding a Specified Section
	12.9 Assigning Output Filenames
	12.10 Image Mode and the --fill Option
	12.10.1 Generating a Memory Image
	12.10.2 Specifying a Fill Value
	12.10.3 Steps to Follow in Using Image Mode

	12.11 Array Output Format
	12.12 Controlling the ROM Device Address
	12.13 Control Hex Conversion Utility Diagnostics
	12.14 Description of the Object Formats
	12.14.1 ASCII-Hex Object Format (--ascii Option)
	12.14.2 Intel MCS-86 Object Format (--intel Option)
	12.14.3 Motorola Exorciser Object Format (--motorola Option)
	12.14.4 Extended Tektronix Object Format (--tektronix Option)
	12.14.5 Texas Instruments SDSMAC (TI-Tagged) Object Format (--ti_tagged Option)
	12.14.6 TI-TXT Hex Format (--ti_txt Option)

	13 Sharing C/C++ Header Files With Assembly Source
	13.1 Overview of the .cdecls Directive
	13.2 Notes on C/C++ Conversions
	13.2.1 Comments
	13.2.2 Conditional Compilation (#if/#else/#ifdef/etc.)
	13.2.3 Pragmas
	13.2.4 The #error and #warning Directives
	13.2.5 Predefined symbol _ _ASM_HEADER_ _
	13.2.6 Usage Within C/C++ asm() Statements
	13.2.7 The #include Directive
	13.2.8 Conversion of #define Macros
	13.2.9 The #undef Directive
	13.2.10 Enumerations
	13.2.11 C Strings
	13.2.12 C/C++ Built-In Functions
	13.2.13 Structures and Unions
	13.2.14 Function/Variable Prototypes
	13.2.15 C Constant Suffixes
	13.2.16 Basic C/C++ Types

	13.3 Notes on C++ Specific Conversions
	13.3.1 Name Mangling
	13.3.2 Derived Classes
	13.3.3 Templates
	13.3.4 Virtual Functions

	13.4 Special Assembler Support
	13.4.1 Enumerations (.enum/.emember/.endenum)
	13.4.2 The .define Directive
	13.4.3 The .undefine/.unasg Directives
	13.4.4 The $defined() Built-In Function
	13.4.5 The $sizeof Built-In Function
	13.4.6 Structure/Union Alignment and $alignof()
	13.4.7 The .cstring Directive

	A Symbolic Debugging Directives
	A.1 DWARF Debugging Format
	A.2 Debug Directive Syntax

	B XML Link Information File Description
	B.1 XML Information File Element Types
	B.2 Document Elements
	B.2.1 Header Elements
	B.2.2 Input File List
	B.2.3 Object Component List
	B.2.4 Logical Group List
	B.2.5 Placement Map
	B.2.6 Symbol Table

	C Hex Conversion Utility Examples
	C.1 Scenario 1: Building a Hex Conversion Command File for a Single 8-Bit EPROM
	C.2 Scenario 2: Building a Hex Conversion Command File for 16-BIS Code
	C.3 Scenario 3: Building a Hex Conversion Command File for Two 8-Bit EPROMs

	D Glossary
	D.1 Terminology

	E Revision History
	E.1 Recent Revisions

	Important Notice

