
Application Report
SPRA383A - July 2002

1

Using the Scripting Utility in the Code Composer Studio
Integrated Development Environment

Nipuna Gunasekera Software Development Systems/Customer Support

ABSTRACT

Scripting is a new utility available for the Code Composer Studio integrated development
environment (IDE) v2.10. It provides a library of commands that integrate into Perl or Visual
Basic for Applications (VBA), to provide a batch-mode scripting capability that can be utilized
in automated testing and/or validation. This application report describes how to use scripting,
in collaboration with Perl and VBA scripts, that will automatically invoke Code Composer
Studio and perform some simple tasks.

Contents

1 Introduction 1.

2 System Requirements 2.

3 Scripting Using VBA Scripts 2.

4 Scripting Using Perl Scripts 5.

5 Items of Special Note 7.

6 Reference 7.

List of Examples

Example 1. VBA Script Used With Scripting 4.
Example 2. Perl Script Used With Scripting 6.

1 Introduction

Scripting is an interface that provides access from Perl or Visual Basic for Applications (VBA) to
basic functions within Code Composer Studio. This application report describes how to use
scripting, in collaboration with Perl and VBA scripts, that will automatically invoke Code
Composer Studio and perform some simple tasks. For more detailed technical information, refer
to the documentation available at (Your_Install)\ti\plugins\generic\CC_SCRIPTING.HLP.

Using scripting, a simple Perl or VBA script can load a program, set breakpoints, run, read/write
memory and registers, execute general extension language (GEL) commands, and perform
various other simple debugging functions.

Code Composer Studio, TMS320C5000, TMS320C6000 and OMAP are trademarks of Texas Instruments.

Trademarks are the property of their respective owners.

SPRA383A

2 Using the Scripting Utility in the Code Composer Studio Integrated Development Environment

2 System Requirements

Scripting requires the following setup:

• Code Composer Studio v 2.10 for the TMS320C5000 or TMS320C6000 digital signal
processors (DSPs), or OMAP DSP-based processor.

• Visual Basic for Applications capable program (e.g., MS Excel)

• Perl 5.004 is provided with Scripting.

3 Scripting Using VBA Scripts

Scripting provides VBA script examples located at (Your_Install)\ti\bin\utilities\ccs_scripting
\examples\vba, which can be opened using Microsoft Excel. The following dialog box will
appear, as it does on any Excel spreadsheet that has embedded VBA.

1. To open any one of the Excel files, double-click on the file.

2. Click the Enable Macros button.

3. Click on Tools –> Macro –> Visual Basic Editor to see the actual Visual Basic code. The
code can be executed by using the blue triangular button on the Excel toolbar.

To create a new VBA script:

1. Open up Microsoft Excel and click on Tools –> Macro –> Macro, provide a Macro name,
and click Create. If you wish, you can begin by copying and pasting the following script
provided in the main module.

SPRA383A

3 Using the Scripting Utility in the Code Composer Studio Integrated Development Environment

2. Make sure to create new references by clicking on Tools –> Reference, and check the
CCS Scripting Com 1.0 Type and Code Composer 1.2 type libraries.

3. If you’re using the following script as an example, make sure to save the newly created
.xls file in (Your_Install)\ti\bin\utilities\ccs_scripting\examples\vba, as it uses one of the
example projects in that directory.

SPRA383A

4 Using the Scripting Utility in the Code Composer Studio Integrated Development Environment

Example 1 assumes that you have C5000 Code Composer Studio v2.1 or higher installed
along with Code Composer Studio Scripting. This script assumes that the TMS320C5510
simulator has been configured via CC_Setup. The script will load and run one of the example
programs packaged with Code Composer Studio Scripting, and also will demonstrate the
method for setting breakpoints and reading register values.

Example 1. VBA Script Used With Scripting

Sub CCStudio_Scripting()

’Declarations
’Create a new CCStudio Scripting object

Dim MyCCScripting As New CCS_SCRIPTING_COMLib.CCS_Scripting

Dim MyPath As String
Dim MyProgram As String
Dim Visible As Integer
Visible = 1

MyPath = ThisWorkbook.Path
MyProgram = MyPath + ”\hello\hello.out”
MyProject = MyPath + ”\hello\hello.pjt”

’The following test:
’Opens the currently configured CCStudio
’Opens and Builds a project
’Loads a program
’Sets a breakpoint at ”main”
’Runs to ”main”
’Reads the value of the PC
’Closes the CCStudio application

Call MyCCScripting.CCSOpenNamed(”*”, ”*”, Visible)
Call MyCCScripting.ProjectOpen(MyProject)
Call MyCCScripting.ProjectBuild
Call MyCCScripting.ProgramLoad(MyProgram)
MainVal = MyCCScripting.SymbolGetAddress(”main”)
Call MyCCScripting.BreakpointSetAddress(MainVal)
Call MyCCScripting.TargetRun
MyPCVal = MyCCScripting.RegisterRead(”PC”)
Call MyCCScripting.CCSClose

If MyPCVal = MainVal Then
 Cells(4, 4) = ”Test Passed”
End If

End Sub

NOTE: When a VBA program makes a Scripting call (such as TargetRun) that may take several
minutes, the VBA program may show a message such as “Excel waiting for OLE Application” or
“Server Busy.” To disable these warnings, place the statement “Application.DisplayAlerts =
False” into your VBA script before the Scripting calls.

C5000 is a trademark of Texas Instruments.

SPRA383A

5 Using the Scripting Utility in the Code Composer Studio Integrated Development Environment

4 Scripting Using Perl Scripts

Scripting will automatically install Perl 5.004 in

(Your_Install)\ti\bin\utilities\ccs_scripting\perl

Perl examples, packaged with Scripting, are available in
(Your_Install)\ti\bin\utilities\ccs_scripting\examples\perl

To run any one of the examples:

1. Run the CCS_Scripting_Perl.bat file which is provided in (Your_Install)\ti\bin\utilities\
ccs_scripting\. This will set the PATH and PERL5LIB environment variables properly for
executing Perl scripts, as shown by the above image. This .bat file may be run as-is, or
the paths referenced may be added to your system environment. This .bat file must be
executed even if you have Perl5.004 or Perl5.005 on your machine, as it sets up your
environment to include the needed Scripting files.

2. Run any of the Perl scripts using the following command. In this case, Debug.pl is the
actual script being executed.

(Your_Install)\ti\bin\utilities\ccs_scripting\examples\perl>perl ccs_Debug.pl

If you wish, you may start by copying and pasting the following script provided as a *.pl file. If
you are using the following script as an example, make sure to save the newly created *.pl file in
(Your_Install)\ti\bin\utilities\ccs_scripting\examples\perl, as it uses one of the example projects in
that directory.

Example 2 assumes that you have C5000 Code Composer Studio v2.1 or higher installed along
with Scripting, and also assumes that a C5510 simulator is the sole existing configuration. This
will load and run one of the example programs packaged with Code Composer Studio.

SPRA383A

6 Using the Scripting Utility in the Code Composer Studio Integrated Development Environment

Example 2. Perl Script Used With Scripting

#Example of a Perl script used with CCStudio Scripting:
use CCS_SCRIPTING_PERL;
#Declarations
#Create a new CCStudio Scripting object

my $MyCCScripting = new CCS_SCRIPTING_PERL::CCS_Scripting();
my $MyProgram;
my $MyPath;
my $MyPCVal;
my $MainVal;
my $LogFile;
$MyPath = ”C:\\ti\\bin\\utilities\\ccs_scripting\\examples\\perl”;
$MyProgram = ”.\\hello\\hello.out”;
$MyProject = ”.\\hello\\hello.pjt”;
$LogFile = ”.\\Test.log”;

#Begin a log file. Set the output to trace the Scripting calls made
$MyCCScripting –> ScriptTraceBegin($LogFile);
#The following test:
#Opens the currently configured CCStudio
#Opens and Builds a project
#Loads a program
#Sets a breakpoint at ”main”
#Runs to ”main”
#Reads the value of the PC
#Closes the CCStudio application

$MyCCScripting –> CCSOpenNamed(”*”,”*”,1);
$MyCCScripting –> ProjectOpen($MyProject);
$MyCCScripting –> ProjectBuild();
$MyCCScripting –> ProgramLoad($MyProgram);
$MainVal = $MyCCScripting –> SymbolGetAddress(”main”);
$MyCCScripting –> BreakpointSetAddress($MainVal);
$MyCCScripting –> TargetRun();
$MyPCVal = $MyCCScripting –> RegisterRead(”PC”);
$MyCCScripting –> CCSClose();

if ($MyPCVal == $MainVal)
{
 $MyCCScripting –> ScriptTraceWrite(”Test Passed \n\n”);
}

NOTE: Any GEL command may be executed in Scripting via the TargetEvalExpression
applications programming interface (API). For example, mapping memory from Gel in Scripting
would look like the following:

/* Map MMR Memory */
VBA
ValResult = MyCCScripting.TargetEvalExpression(”GEL_MapAdd(0x000000u,1,0x000050u,1,1)”)
/* Map MMR Memory */
Perl
$ValResult = $MyCCScripting–>TargetEvalExpression
 (”GEL_MapAdd(0x000000u,1,0x000050u,1,1)”);

SPRA383A

7 Using the Scripting Utility in the Code Composer Studio Integrated Development Environment

5 Items of Special Note

Code Composer Studio may be opened one of two ways:

• CCSOpenNamed(sBoardName, sCPUName, bVisible) will open the specific board and CPU
named by the strings sBoardName and sCPUName, as they have been named in the
configuration in CC_Setup.

A wildcard character ”*” may be given for sBoardName and sCPUName. For example,
CCSOpenNamed(”*”, ”*”, bVisible) will open the first or only item in the configuration.

• CCSOpen(nMajorISA, nMinorISA, nCPUIndex, nPlatform, bVisible): This opens a specific
board or a simulator from the configuration list.

CCSOpen allows the user to specify which CPU in a particular debug chain to open through
the third parameter, nCPUIndex.

nCPUIndex is a zero-based index. For example, nCPUIndex = 1 specifies the second CPU of
the designated type found.

Examples in VBA:

Open a c55x simulator if it is the only one in the configuration list:

Call MyScript.CCSOpenNamed(”*”, ”*”, true)

Open 2 c55x emulators from a configuration list simultaneously using CCSOpen:

Call MyScript.CCSOpen(CCS_SCRIPTING_COMLib.ISA_C55, 0, 0,
CCS_SCRIPTING_COMLib.PLATFORM_EMULATOR, true)

Call MyScript.CCSOpen(CCS_SCRIPTING_COMLib.ISA_C55, 0, 1,
CCS_SCRIPTING_COMLib.PLATFORM_EMULATOR, true)

Open 2 c55x emulators from a configuration list simultaneously using CCSOpenNamed:

Call MyScript.CCSOpenNamed(“C55x Texas Instruments”, “CPU_1”, true)

Call MyScript.CCSOpenNamed(“C55x Texas Instruments”, “CPU_2”, true)

• CCSClose takes in a parameter, nCloseAll, which default to true (1). When nCloseAll = true,
CCSClose will terminate all Code Composer Studio processes that are running. When
nCloseAll = false, only the current Code Composer Studio processes will be closed. It is
highly recommended that CCSClose(true) be specified when all scripting functions have
been completed, to avoid leaving orphaned processes running on the system.

• If a user script is interrupted by an error condition (e.g., ”ProgramLoad: file not found”), when
your script shuts down, make sure that there is no cc_app.exe processes still running in the
background. Having an orphaned cc_app running when the Scripting functions are called
can lead to unpredictable results.

6 Reference
1. Scripting documentation

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third–party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright  2002, Texas Instruments Incorporated

