Application Note

MSPM0 MCU 快速参考指南

内容

1 MSPM0 概述	2
1.1 产品系列	2
1.2 生态系统	
2 MSPM0 设计资源	
2.1 培训资源	4
2.2 开发工具	4
2.3 嵌入式软件资源	
2.4 硬件工具和 EVM	g
3 MSPM0 应用资源	11
3.1 应用手册	11
3.2 应用特定的资源	11
4 首字母缩写词及定义	13
5 修订历史记录	13

商标

TI E2E[™], LaunchPad[™], Code Composer Studio[™], and EnergyTrace[™] are trademarks of Texas Instruments. Arm[®] and Cortex[®] are registered trademarks of Arm Limited.

所有商标均为其各自所有者的财产。

1 MSPM0 概述

1.1 产品系列

TI 的可扩展 MSPM0 MCU 产品系列基于以高达 80MHz 速度运行的增强型 Arm® Cortex®-M0+ 32 位处理器。Cortex-M0+ 处理器是适用于嵌入式应用的节能型 Arm 处理器。这些成本优化型 MCU 可在各种存储器和封装尺寸中实现引脚对引脚兼容性,如图 1-1 所示。软件开发可在整个 MSPM0 产品系列中重复使用。MSPM0 MCU 概述和主要特性如表 1-1 所示。请参阅器件特定数据表,详细了解器件特定的额外功能。

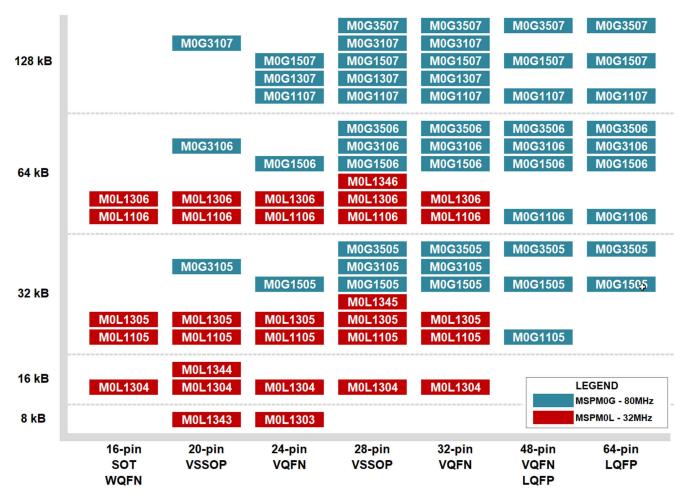


图 1-1. MSPM0 产品组合

表 1-1. 关键特性

特性	MSPM0Gx 系列	MSPM0Lx 系列
内核/频率	CM0+/80MHz	CM0+/32MHz
电源电压	1.62V 至 3.6V	1.62V 至 3.6V
温度	-40°C 至 125°C	-40°C 至 125°C
存储器	128KB 至 32KB	64KB 至 8KB
RAM	高达 32KB	高达 4KB
GPIO (最大值)	60	28
	2 个 4Msps 12 位 ADC	1 个 1Msps 12 位 ADC
Lift-Lot	3 个高速比较器	1 个高速比较器
模拟	2 个运算放大器	2 个运算放大器
	1 个 12 位 DAC	

www.ti.com.cn MSPM0 概述

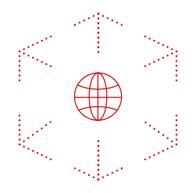
表 1-1. 关键特性 (continued)

*** ** * * * * * * * * * * * * * * * *		
特性	MSPM0Gx 系列	MSPM0Lx 系列
	2x SPI	1x SPI
· · · · · · · · · · · · · · · · · · ·	2 个 I2C Fast+	2 个 I2C Fast+
通信(最大值)	4 个 UART (LIN)	2 个 UART (LIN)
	1 个 CAN-FD	
计时器	7	4
高级计时器 [HJ2]	是(2个)	否
硬件加速器	可选	不适用
安全性	CRC、TRNG、AES256	CRC
Ar-11 4-0	有效:85μA/MHz	有效:85μA/MHz
低功耗	待机 (RTC):1.5μA	待机:1.5μA

1.2 生态系统

MSPM0 MCU 由广泛的硬件和软件生态系统提供支持。该生态系统包括易于使用的开发工具、经济实惠的评估板以及各种嵌入式软件套件、驱动程序和示例。此外,MSP Academy 中包括的交互式培训提供了引导式学习路径,并可直接通过 TI E2E™ 支持论坛提供在线支持。

Made by TI and our third-party network


Development tools

Easily develop, debug and analyze code on your desktop or in the cloud

Embedded software

Wide range of software development kits, drivers, libraries and more

Hardware

Robust, affordable kits and evaluation boards

Training

From foundational to advanced, you have help from start to finish

Wide range of hardware, software and services across our network

图 1-2. MSPM0 生态系统

要开始使用 MSPM0 MCU 进行开发,请购买 MSPM0 LaunchPad™ 开发套件。下载 Code Composer Studio 和 MSPM0 SDK 以访问示例代码和演示。考虑完成 MSPM0 Academy 中的培训和实验。这些实验演示了 MSPM0 外设的主要特性,并包括几个交互式练习。

2 MSPM0 设计资源

2.1 培训资源

2.1.1 MSP Academy

MSPM0 Academy 提供易于使用的培训模块,涵盖 MSPM0 SDK 中的各种主题和 LaunchPad。这些交互式培训为所有开发人员了解 MSPM0 提供了一个很好的切入点。培训将介绍不同的外设以及系统级主题。我们以英语和普通话提供这些学院课程。

- 英文版 MSPM0 Academy
- 中文版 MSPM0 Academy

2.1.2 高精度实验室

高精度实验室-微控制器 (TIPL) 是面向模拟信号链和嵌入式处理设计人员的综合性在线课堂。从基础知识到高级概念,我们合乎逻辑、排列有序且全面的教学方法既直观又实用。培训系列包括视频和可下载的参考材料,将会使经验丰富的工程师深化专业技术知识,还能使处于职业生涯初期的工程师加速成长。联系我们的行业专家,他们将指导您浏览我们丰富的教程库以及选定主题的实践实验,并让您自己成为专家!

2.2 开发工具

2.2.1 集成开发环境 (IDE)

有三个主要的 IDE 支持 MSPM0。

IDE	说明
Code Composer Studio : Theia	TI 基于 Theia 的新型 IDE,与 Visual Studio Code 扩展兼容
Code Composer Studio	TI 基于 Eclipse 的 IDE,提供一整套用于开发和调试嵌入式应用的工具。
IAR Embedded Workbench for Arm	来自 IAR Systems 的第三方 IDE。
Keil μVision	来自 Arm Keil 的第三方 IDE

特性	ccs	IAR	Keil
编辑代码	✓	✓	✓
编译和调试代码	✓	✓	✓
SWD 编程	✓	✓	✓
Windows 操作系统	✓	✓	1
Mac OS	✓		
Linux 操作系统	✓		

Code Composer Studio (CCS) 是 TI 的优选 IDE。CCS 是免费的,集成了 TI Resource Explorer,这是访问 MSPM0 SDK 提供的代码示例和培训的简单方法。

以下是有关使用 CCS 的额外资源:

- · CCS 交互式学院培训
- CCS v12.1.0 入门指南
- 视频: Code Composer Studio v9.3 入门
- CCS 集成工具:
 - SysConfig:系统配置和软件生成工具
 - TI Resource Explorer:包含用于评估和开发的 MSPM0 软件资源。
 - EnergyTrace:执行基于能源的代码分析,测量并显示任何应用中 MSPM0 MCU 的能源曲线。
 - ULP (超低功耗) Advisor: 为代码中的超低功耗改进提供建议。

2.2.2 SysConfig 代码生成工具

系统配置 (SysConfig) GUI 是一款功能强大的交互式直观图形工具,用于启用、配置和生成 MSPM0 MCU 的初始化代码。它可帮助您直观地管理和解决资源冲突,以及提供引脚多路复用实用程序。SysConfig 可以作为独立程序与 IAR、Keil 和其他 IDE 一起使用,但它作为插件集成在 CCSv12.0+ 和 CCS Theia 中。

• 适用于 MSPM0 的 SysConfig 指南

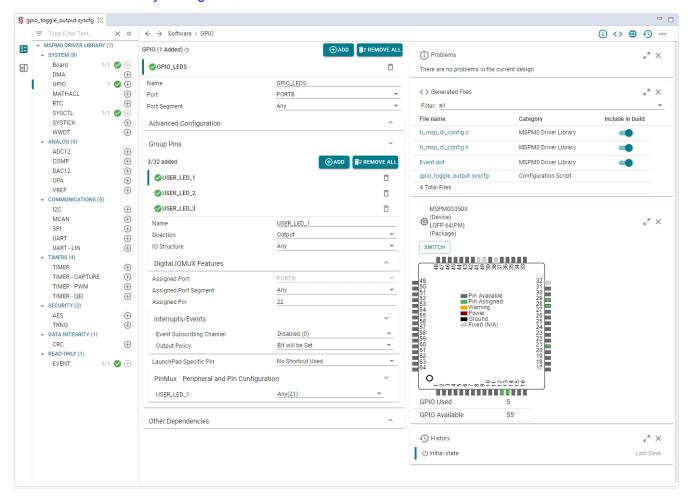


图 2-1. MSPM0 SysConfig 示例

2.2.3 Analog Config 工具

Analog Config 是一款基于 GUI 的工具,它使用 SysConfig 和可视方框图在零代码环境中快速开发 MSPM0 工程。只需点击几下,用户即可形象地呈现其模拟信号链、对其进行修改以及查看要进行评估的实时数据。工程可导出到 CCS 以进行进一步定制和评估,用户也可以直接从模拟配置器刷写器件。

- MSPM0 Analog Configurator
- Analog Configurator GUI

2.2.4 编译器

TI Arm Clang 源自开源的 Clang 编译器,是 TI 针对 MSPM0 的优选编译器。它支持基于 TI Arm 的平台,尤其是采用 TI Arm Cortex-M 和 Cortex-R 系列器件的平台。

- 用户指南: TI Arm Clang 编译器工具用户指南
- 相关软件开发用户指南:
 - ARM 汇编语言工具用户指南
 - ARM 优化 C/C++ 编译器用户指南

第三方编译器:

• GCC ARM: GCC 开源编译器

Keil ARM Clang: ARM 编译器版本 6
IAR EWARM: ARM Cortex-M 版本

2.2.5 调试和编程工具

表 2-1 比较了 TI 推荐的不同 MSPM0 调试器和编程器工具的特性,表 2-2 比较了这些接口。

表 2-1. 调试器和编程器工具

特性	XDS110	MSP-GANG
类型	调试器	编程器
2 线制 SWD	是	是
BSL 模式	是	是
MTB 跟踪	是	否
受 CCS、IAR 和 Keil 支持	是	否
EnergyTrace 技术 (ET)	是	否
同时编程目标数	1	8
独立或基于脚本的编程	否	是
阶段	开发	量产

表 2-2. 调试器和编程器功能

特性	SWD	ROM 引导加载程序 (BSL)	主存储器引导加载程序插 件
调试	是	否	否
编程	是	是	是
所需的引脚	2	2	可定制
协议	2线	UART 或 I2C	可定制
优势	引脚和布线比 JTAG 少	简单编程接口	支持定制的 BSL

2.2.5.1 调试器/编程器

支持所有 MSPM0 的仿真开发工具。本节中介绍的工具包括调试器和不具有调试功能的生产编程器。

2.2.5.1.1 XDS110

TI XDS110 是适用于 MSPM0 MCU 的优选调试器工具。XDS110 在支持微跟踪缓冲器 (MTB) 的 MSPM0 器件上启用 MTB。XDS110 使用 TI 20 引脚连接器(带有用于 TI 14 引脚以及 Arm 10 引脚和 Arm 20 引脚的多个适配器)连接到目标板,并通过 USB 2.0 高速 (480Mbps) 连接到主机 PC。XDS110 还具有两个附加连接:支持EnergyTrace 技术的辅助 14 引脚端口连接器、一个全双工 UART 端口和四个通用 I/O,以及用于连接 XDS110 EnergyTrace HDR 插件的扩展 30 引脚连接器。MSPM0 LaunchPad 套件还包括板载嵌入式 XDS-110 电路,可在需要时用作编程器。

• XDS110 用户指南

图 2-2. XDS110 调试探针

2.2.5.1.2 MSP-GANG - TI 生产编程器

MSP-GANG 是一款生产编程器。它一次最多可以对八个相同的 MSP 器件进行编程,但无法执行代码的实时调试。它可以在连接或不连接到 PC 的情况下运行。MSP Gang 编程器不是传统意义上的 Gang 编程器,因为没有八个插座可用于对目标器件进行编程。相反,MSP Gang 编程器连接到安装在最终电路或系统中的目标器件。

图 2-3. MSP-GANG 编程器

2.2.5.1.3 Segger J-Link 和其他第三方 Arm 调试器

MSPM0 MCU 不限于前面列出的 TI 工具,还可以利用更广泛的 Arm 生态系统。MSPM0 MCU 使用 Arm Cortex-M0+ 内核和标准 SWD 编程接口,因此也可以选择第三方 Arm 兼容工具。可用的工具包括 IAR i-jet、Keil ULINK、P&E Micro Cyclone、Lauterbach uTrace 等。

SEGGER J-Link 调试探针可能是当今使用最广泛的调试探针系列,它们也使用上述内核和接口来支持 MSPM0 MCU 产品系列。J-Link 调试探针拥有高达 3MB/s 的 RAM 下载速度和全新的闪存加载程序,并且能够在 MCU 闪存中设置无限数量的断点,因此可优化您的调试和闪存编程体验。

- 将 Segger 编程器与 MSPM0 MCU 结合使用
- J-Link/J-Trace 用户指南

2.2.5.2 软件编程工具

2.2.5.2.1 Uniflash

UniFlash 是一个独立的工具,可用于在 TI MCU 上对片上闪存进行编程。Uniflash 具有 GUI、命令行和脚本界面。CCS UniFlash 免费提供。

- 适用于 MSPM0 的 UniFlash 指南
- 《UniFlash 快速入门指南》

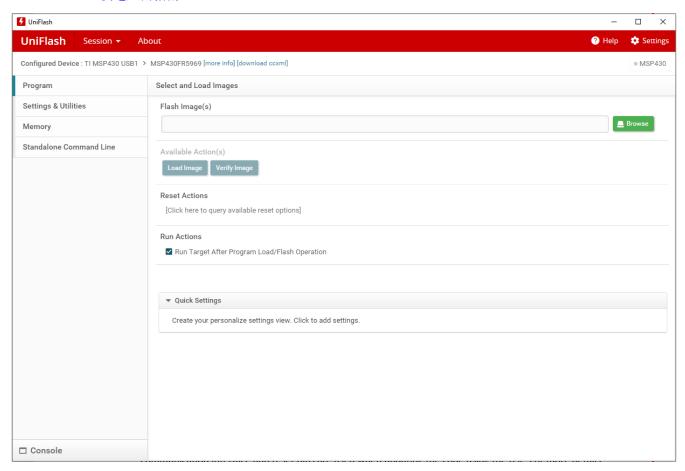


图 2-4. UniFlash

2.2.5.2.2 引导加载程序 (BSL)

BSL 是一个程序,出厂时存储在 MSPM0 闪存或 ROM 中。BSL 用于编程、擦除和读取存储在主存储器、信息存储器或 RAM 中的代码。使用 BSL 更新代码时,使用 BSL 通信接口和复位引脚。有关 BSL 及其通信接口的更多详细信息,请参阅特定器件数据表中的引导加载程序 (BSL) 部分。

- MSPM0 BSL 应用手册
- MSPM0 SDK 中的 MSPM0 BSL 示例

2.3 嵌入式软件资源

2.3.1 MSPM0 软件开发套件 (SDK)

MSPM0 SDK 汇集了代码示例和驱动程序库等软件资源,可帮助您高效地创建和构建 MSPM0 代码。该 SDK 还包含详细而全面的文档,可加快开发过程。MSPM0 SDK 集成到 CCS 中的 TI Resource Explorer,或者在线提供云版本。

- MSPM0 SDK 文档:
 - SDK 用户指南
- 包含:
 - 外设驱动程序,支持在 MSPM0 MCU 上进行开发
 - 中间件库,可为各种应用和使用案例提供即用型软件和示例
 - FreeRTOS M0+ 内核,用于启用 RTOS 应用
 - 从最基本到综合全面的演示等数百个示例,可加快应用开发
 - SysConfig 元数据,支持将 SysConfig 与 MSPM0 MCU 结合使用
 - 文档和代码示例,展示器件和软件的特性

2.3.1.1 代码示例

MSPM0 SDK 随附广泛的代码示例,可帮助工程师快速开发应用程序。examples 文件夹分为 RTOS 和非 RTOS。这些文件夹包含每个 LaunchPad 套件的示例,并根据功能进行整理,例如较低层的 Driverlib 示例、较高层的 TI 驱动程序示例以及 GUI Composer、LIN、IQMath 等中间件的示例。大多数示例都支持 SysConfig,以便简化器件配置和加快软件开发。

- MSPM0 SDK 代码示例:
 - MSPM0Gxx 代码示例
 - MSPM0Lxx 代码示例

2.3.1.2 驱动程序库 (DriverLib)

DriverLib 层由低层驱动程序组成,为所有器件功能提供支持,并对性能和低存储器占用空间进行更好的优化。DriverLib 包含软件 API,使器件的硬件寄存器详细信息不再抽象。该 SDK 包含数十个示例,展示了如何使用 DriverLib API。DriverLib 支持 CCS、IAR 和 Keil IDE。

- MSP 驱动程序库
- DriverLib API 指南

2.3.2 实时操作系统 (RTOS)

MSPM0 可以支持各种开源 RTOS 系统,而 MSPM0 SDK 包括对 FreeRTOS 的支持。FreeRTOS 是市面上先进的 RTOS。它根据 MIT 开源许可证免费发布,包括一个内核和一组不断增加的库,适用于许多不同的应用。

有关其他开源 RTOS 系统,请访问 OSRTOS 网页。

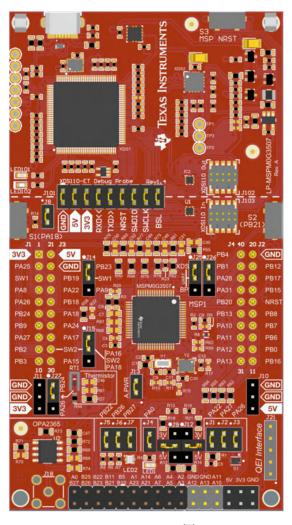
2.3.3 子系统示例

MSPM0 子系统是有助于解决常见 MCU 设计难题的设计资源。每个子系统都包含一个软件包和文档,其中介绍了子系统中的设计选择。MSPM0 代码示例旨在展示特定功能的工作原理,而 MSPM0 子系统展示了如何使用不同的外设一起执行任务。随附的文档说明了设计意图和内部工作情况,以帮助工程师作出修改以满足其系统要求。 MSPM0 子系统的目标是为典型的微控制器使用案例提供高质量参考,从而帮助工程师加快原型设计和设计阶段。

- 节 3.1 提供了 MSPM0 子系统应用简报
- MSPM0Gxx 子系统软件示例
- MSPM0Lxx 子系统软件示例

2.4 硬件工具和 EVM

2.4.1 开发板


MSPM0 有一个简单的开发板生态系统,如表 2-3 所示。LaunchPad 套件可用于设计的多个阶段。

#	0 0	TT 42-44
表	Z-3	. 开发板

· · · · · · · · · · · · · · · · · · ·		
特性	LaunchPad 套件	BoosterPack 模块
TI.com 现货发售	是	是
板载调试器	是	否
引出线	基础版	基础版
优势	价格低廉、易于使用	插件模块与大多数 LaunchPad 套件兼容
镜台	评估、开发	使用数字或模拟传感器进行快速原型设计

TI LaunchPad 套件是 TI 开发的低成本开发板,包括板载调试器。与其他开发板相比,LaunchPad 套件支持由称为 BoosterPack 模块的插件模块组成的多样化生态系统。可以将不同的 LaunchPad 套件和 BoosterPack 模块连接在一起以创建更大的系统。通常,LaunchPad 套件是评估或开发基于 MSP 的应用的理想之选。

- MSPM0Gxx LaunchPad 套件
- MSPM0Lxx LaunchPad 套件

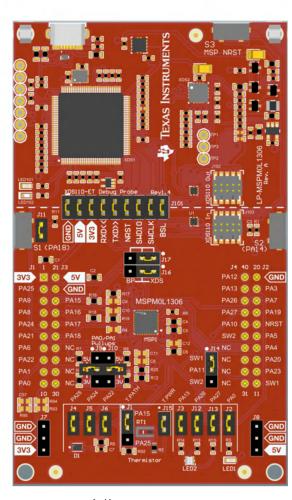


图 2-5. MSPM0Gxx 和 MSPM0Lxx LaunchPad 套件

3 MSPM0 应用资源

3.1 应用手册

以下应用手册对 MSPM0 MCU 和外设进行了介绍,可供您在开发设计时参考。

- 迁移指南
 - STM32 至 MSPM0 迁移指南
 - MSP430 至 MSPM0 迁移指南
- MSPM0 子系统
 - PWM LED 驱动器
 - 可编程增益放大器
 - 跨阻放大器
 - 5V接口
 - 采用乒乓模式 DMA 的 ADC
 - 热敏电阻温度传感器
- 硬件
 - MSP 器件故障排除指南
 - MSP 32kHz 晶体振荡器
 - MSPM0Gx MCU 硬件开发指南
 - MSPM0Lx MCU 硬件开发指南
- 模拟
 - 借助 MSPM0 精密模拟,轻松进行系统设计
 - 《模数规格和性能特性术语表》
 - 《对 MSP ADC 进行一般过采样以提高分辨率》
 - 《高速模数转换器基础知识》
 - 《使用 ADC12_A 实现热电偶接口》
- 通信
 - 《了解 I2C 总线》
- 电源
 - MSPM0 G 系列 MCU 低功耗优化指南
 - MSPM0 L 系列 MCU 低功耗优化指南
- ESD
 - 静电放电 (ESD)
 - MSP 系统级 ESD 注意事项

3.2 应用特定的资源

本节包含针对特定应用的 MSPMO 资源,在开发设计时也可参考这些资源。

扇区	应用
电力输送	• 电池管理
楼宇自动化	• 烟雾探测器
工厂自动化	• 现场传感器
医疗	温度计脉搏血氧仪
电机控制	 电动工具和园艺工具 电机控制: TRAP 电机控制: FOC 电机控制: H 桥

MSPM0 应用资源 www.ti.com.cn

扇区	应用
个人电子产品	云台TWS 充电器

4 首字母缩写词及定义

首字母缩写词	定义
ADC	模数转换器
AES	高级加密标准
Arm	Arm Limited
BSL	引导加载程序
CCS	Code Composer Studio™ IDE
CPU	中央处理器
DSP	数字信号处理
ECDSA	椭圆曲线数字签名算法
ESD	静电放电
ET	EnergyTrace™ 技术
EVM	评估模块
FAQ	常见问题解答
GUI	图形用户界面
IDE	集成开发环境
JTAG	联合测试行动组
КВ	千字节
MCU	微控制器
MSP	混合信号处理器
NVM	非易失性内存
OPA	运算放大器
OS	操作系统
PC	个人计算机
RAM	随机存取存储器
ROM	只读存储器
RTOS	实时操作系统
SDK	软件开发套件
SMT	表面贴装
SWD	串行线调试
TIA	跨阻放大器
TS	目标插座
TRM	技术参考手册
TRNG	真随机数生成器

5 修订历史记录

注:以前版本的页码可能与当前版本的页码不同

日期	修订版本	说明
2023年2月	А	首次公开发布

重要声明和免责声明

TI"按原样"提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。

这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

TI 反对并拒绝您可能提出的任何其他或不同的条款。

邮寄地址: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023,德州仪器 (TI) 公司