Luis Reynoso

Tl Designs: Reference Designs

Keyboard Controller using MSP430

@i TEXAS INSTRUMENTS

Tl Designs Design Features

TI Designs provide the foundation that you need * Low-power implementation

including methodology, testing and design files to e Cost-effective

quickly evaluate and customize and system. Tl . Customizable for different keyboard layouts

Designs help you accelerate your time to market.) R
« Supports different communication interfaces

Design Resources (USB and 12C examples included)

_ e Supports multimedia keys
TIDM-KEYBOARD Design Folder + "Ghost" key detection
MSP430F5529 Product Folder

e Composite USB allows users to send

MSP430G2744 Product Folder .
TPS73533 Product Folder custom data through HID-datapipe
TPD2EO01 Product Folder Featured App“cations

« PC Keyboards

e Gaming
m 11 ASK Our Analog Experts * Sensor Hub Aggregation

Community

Block Diagram

_ | 12c
o
©
9 g UART
2 S [spi
g B
3 < | ADC
H g =
@ % Timers
@ | GPios
5V LDO
TPS73533
_ | 1c
g
8 |:
9 GE) UART
= o
2 5]
. 2 SPI
3 € > >
‘% § ADC
e o
] = |:
@ ‘2 Timers
3 | ePios
TIDU521-October 2014 Keyboard Controller using MSP430 1

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521
mailto:luis.reynoso@ti.com
http://www.ti.com/tool/TIDM-KEYBOARD
http://www.ti.com/product/msp430F5529
http://www.ti.com/product/msp430g2744
http://www.ti.com/product/tps73533
http://www.ti.com/product/tpd2e001
http://e2e.ti.com
http://e2e.ti.com/
http://www.ti.com/lsds/ti/analog/webench/overview.page?DCMP=sva_web_webdesigncntr_en&HQS=sva-web-webdesigncntr-vanity-lp-en

13 TEXAS
INSTRUMENTS

System Description www.ti.com

A

11

An IMPORTANT NOTICE at the end of this Tl reference design addresses authorized use, intellectual property matters and other
important disclaimers and information.

System Description

This reference design describes the implementation of a keyboard controller with the following
characteristics:

» Supports standard matrix keyboards: this design shows an implementation using a 15x8 matrix but
different keyboard layouts can be used

» Independent of the communication interface: examples for USB and I12C are included
* HID compliant: can interface directly with PC using USB or HID Over I2C.

» “Ghost” key handling in software: prevents incorrect key detection from multiple simultaneous key
presses

» HID boot protocol support: allows keyboard to be used to interface with a PC’s BIOS

» Supports multimedia keys: common multimedia and power keys are implemented

* Low power consumption: device goes to low power mode when idle

» Composite USB device: an HID-datapipe back-channel is implemented to send custom data to the PC

e Can be implemented in practically any MSP430 platform: examples for MSP430F5529 and
MSP430G2744 are included

MSP430 Family of Microcontrollers

The Texas Instruments MSP430 family of ultra-low-power microcontrollers consists of several devices
featuring different sets of peripherals targeted for various applications. The architecture, combined with
extensive low-power modes, is optimized to achieve extended battery life in portable measurement
applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators
that contribute to maximum code efficiency.

The software included in the design can be migrated to practically any MSP430 with enough GPIOs, but
the available examples are implemented for MSP430F5529 and MSP430G2744.

2

Keyboard Controller using MSP430 TIDU521-0October 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

13 TEXAS

INSTRUMENTS

www.ti.com

System Description

111 MSP430F5529

The MSP430F552x series of microcontrollers include an integrated USB and PHY supporting USB 2.0 full-
speed communication, four 16-bit timers, a high-performance 12-bit analog-to-digital converter (ADC), two
universal serial communication interfaces (USCI), hardware multiplier, DMA, real-time clock module with

alarm capabilities, and up to 63 I/O pins.

This reference design uses the MSP430F5529 derivative to show an implementation using USB or 12C,
but with plenty of resources left to allow for further customization. This device is the superset of the family,
with 128KB of Flash, 10KB of RAM and 63 1/Os in an 80-pin LQFP package.

XIN XOUT RST/NMI DVCC DVSS VCORE AVCC AVSS PA PB pC PD
| | | | | | PLx} P2x}y P3x, P4x, P53/ P6xy P7.x) P8 DP,DM,PUR
+ + + + * * ' b ' ' '
A A 4 A A A Y
XTAN = > ACLK P sYs
Unified ower /0 Ports 110 Ports 110 Ports /0 Ports y
X120UT 4] SOk 128 kB gke+2kg | |Management| | \yochdog P1/P2 P3/P4 P4/P6 P7/P8 Fu'hsspged
System —» SMCLK 96 kB 6 kB+2 kB 2x8 1/0s 2x8 1/0s 2x81/0s 1x8 1/0s
64 kB 4 kB+2 kB LDO Port Map Interrupt 1x3 1/0s USB-PHY
32kB SVMISVS Control & Wakeup USB-LDO
(P4) |
MCLK Brownout PA PB PB PB USB-PLL
f FLASH RAM A 4 A A 1x16 1/0s 1x16 1/0s 1x16 1/0s 1x11 1/Os
AA A A A A AA A A WY WY
cruxvz | g M8 Y A Y Y y y A A 4 A 4 I .
And [A A A A A A A A A A A A =
Working | _ | MDB N A 4 A A 4 A 4 A A 4 A 4 A 4 ».| 3channel
h A 4 A 4 A A 4 A A A A 4 -
EEM
L:8+2) | g A A vy A v Al A vy Al A A v \A 4
| UsCIo,1 ADC12_A
TAG) TAO TAL TA2 TBO usclAx: 12 8it e comp B
SBW MPY32 Timer_A Timer_A Timer_A Timer_A RTC_A CRC16 | g‘:\R;;,I 200KSPS -
Interface 5CC 3cc 3cc 3cc DA 16 Channel 12 Channels
Registers Registers Registers Registers USCI Bx: 14 ex?lTii;
SPI, 2C Autoscan
Note: Memory size and available peripherals and ports may vary, depending on the device.
Figure 1. Functional Block Diagram — MSP430F552x
TIDU521-October 2014 Keyboard Controller using MSP430 3

Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

System Description

13 TEXAS
INSTRUMENTS

www.ti.com

1.1.2 MSP430G2744
The MSP430G2x44 series is an ultra-low-power mixed signal microcontroller with two built-in 16-bit timers,
a universal serial communication interface (USCI), 10-bit analog-to-digital converter (ADC) with integrated
reference and data transfer controller (DTC), and up to 32 I/O pins. Typical application include sensor
systems that capture analog signals, convert them to digital values, and then process the data for display
or for transmission to a host system. Stand-alone radio-frequency (RF) sensor front ends are another area
of application.
This reference design also uses the MSP430G2744 to show an 12C implementation using a smaller
device from the value-line family of MSP430 microcontrollers. This device is the superset of the
MSP430G2x44 family with 32KB of Flash, 1KB of RAM and is available in 40-QFN, 38-TSSOP and the
ultra-small 49-DSBGA package for space constrained application.
Although this implementation is more limited in resources, some pins and enough memory is available for
further customization.
VCC VSS P1.x/P2.x P3.x/P4.x
L L *ZXS *2x8

%a:--;&}------- e DL L e e LY SRl AR

vy 1 :

]]

¥ | Basic » ACLK ADC10 Ports P1/P2 .

s | clock 32 kB 1kB 10-Bit Ports P3/P4 | |

o | System Ly smCLK 16 kB 512 kB 2x81/0 '

. 8 kB 512 kB 12 Interrupt 2x8 1/0 '

: y Channels Capability, | | pull-up/down :

Autoscan pull-up/down resistors

: MCLK DTC resistors :

: § FLASH RAM :

; tT ¢ T A4 A4 44

' MAB '

] 16 MHz

' CPU < A "

. incL 16 \ 4 :

: Registers AMDB x A :

(] (]

]]

]

s L :

0 Emulation 4_ '

bR | g VY ¥V VYV VvV

(] | (]

(] (]

’ <~ Timer_B3 usclAo: | 9

v | ITAe Watchdog Timer A3 - UARTILIN | §

s | Interface < Brownout WDT+ 3cc IrDA, SPI |

0 Protection 3CC Registers]

: I 15/16-Bit Registers Shadow USCI_BO: .

o | Spy-Bi Reg s, 12C | 4

0 Wire]

]]

]

. .

RST/NMI
Figure 2. Functional Block Diagram — MSP430G2x44
4 Keyboard Controller using MSP430 TIDU521-October 2014

Copyright © 2014, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

13 TEXAS
INSTRUMENTS

www.ti.com System Description

1.2 TPS73533

The TPS735xx family of low-dropout (LDO), low-power linear regulators offers excellent AC performance
with very low ground current. High power-supply rejection ratio (PSRR), low noise, fast start-up, and
excellent line and load transient response are provided while consuming a very low 46uA (typical) ground
current. The TPS735xx is stable with ceramic capacitors and uses an advanced BiCMOS fabrication
process to yield a typical dropout voltage of 250mV at 500mA output. The TPS735xx uses a precision
voltage reference and feedback loop to achieve overall accuracy of 2% (VOUT > 2.2V) over all load, line,
process, and temperature variations. It is fully specified from TJ = —40°C to +125°C and is offered in low-
profile, 2mm x 2mm SON and 3mm x 3mm SON packages that are ideal for wireless handsets, printers,
and WLAN cards.

This reference design uses the TPS73533 regulator to convert 5V from USB to 3.3V used by the MSP430
microcontrollers.

2 Block Diagram

5V LDO 3.3V

TPS73533

33V

UART

S

>
(@)
(@}

sjesayduad pue sQld9

Timers

\ 4
Boosterpack-type Connector

Hil

GPIOs

|

Keyboard Matrix

Figure 3. Block Diagram using MSP430F5529

v Do |
TPS73533

3.3V

12C
UART

@

)

? SPI

2

o

3 ADC

T

5

5

Timers

A
\ 4
Boosterpack-type Connector

Hil

GPIOs

|

Keyboard Matrix

Figure 4. Block Diagram using MSP430G2744

TIDU521-October 2014 Keyboard Controller using MSP430 5

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

System Design Theory

13 TEXAS

INSTRUMENTS

www.ti.com

3 System Design Theory
3.1 Key Matrix
The keyboard controller presented in this document implements a key matrix of rows and columns similar
to smaller keypads like the one shown in the application report Implementing An Ultralow-Power Keypad
Interface with MSP430 (SLAA139).
The implementation shown uses a 15 rows x 8 column matrix, which allows up to 120 keys, but it only
uses 84 keys in total.
The key matrix used implemented in this example is shown in Figure 5.
KSIO KSi1 KSI2 KSI3 KSI4 KSI5 KSI6 KSI7
| | | | | | |
KSOO# ESCHTHFsHTabHHHFz HEQEEHFG}i
\ \ \ \ \ \ \ \
Kso1 4{NL1:?L]<-JCI<H SCF‘IiliCKH MFuEie H Q‘ H F“‘ va-':3ess H i H F7‘ }7
KSO2 # Ise‘rt H DeTe H | H PageUp H Pagf(?nH 2 H B H L6 }7
wos | mo H m Hoaw 0 H 2 H oA Hoom Howe —
\ \
oo L H e H'HIHIHH H F—
o H_ H H H H=H H=b
s M H H®HEH H -
Kso7ﬂ | H :‘ H i‘ H Ent‘er H | H | H | H Me.‘qu ’7
oo { = H 2 H oo H H o e e
oo {3 1 H O D e
KSOlO—{ ‘3‘ H ; H T‘ H H‘ H G‘ H v‘ H c‘ H Spat‘:e }7
KSO11 <‘ 05/° H i H R H E H F H D H X H }7
\ \ \ \ \ \ \ \
KSOlZ# | H | H | H | H | H | H RiAgIrt H Iflftt }7
soo {1 H HC O H Hoe
KSOl4—‘ ‘ H ‘ H W‘ H s‘ H A‘ H z‘ H ‘ H 7 }7
Figure 5. Key Matrix
6 Keyboard Controller using MSP430 TIDU521-October 2014

Copyright © 2014, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521
http://www.ti.com/lit/pdf/SLAA139

13 TEXAS
INSTRUMENTS

www.ti.com System Design Theory

Each key works like a switch and pull-ups are required for each of the columns (KSI pins), keeping the idle
state high (see Figure 6).

VCC

23

KSlo
KSl;
KSl,

Ksoo—|—°/A—— ,_o/_ ,_o/_
KSO, I I—o/ pa— ,_/ A
KsO, —re/_ l_/ pu— ’_o/ P

Figure 6. Keyboard Schematic Model

There are multiple ways to scan a key matrix, but this implementation uses two methods, referred in this
application report as: column-interrupt and polling.

In the column-interrupt approach, all KSO pins are actively driven at the same time and KSI pins are
configured to interrupt the processor when any key is pressed.

This method is useful in low-power modes, because any key can wake up the microcontroller; however, it
is important to remark that the key press is only used for that purpose, because this method does not
provide the exact key being pressed.

Figure 7 shows the key matrix behavior when the “Enter” Key is pressed in column-interrupt mode.
Pressing this key will close a path between KSO7 and KSI3, thus causing a state change in KSI3. This is
shown by red lines which indicate the lines which are not in an idle state. Notice that KSI3 would detect
the event when the “Enter” key is pressed, but the effect would be the same for any other pin pressed in
the same column.

KSIO ... KSI3 KSl14 ..
| |

KSOO# Esc H Tab H F1 }—
\ |

KSOl# F11 H Q H }7

KSO7

Ks.osﬁ - H | H
K3614{ H s H

\ |
Figure 7. Detection of a Key Using Column-Interrupt Method

T

-

After the system is awake due to a key press using the column-interrupt approach, the Polling method can
be used to determine which key(s) is (are) being pressed.

In the Polling method, each row is scanned separately by driving one KSO at a time in sequential order.
KSI pins are then read giving the exact keys being pressed.

The following image shows the result of pressing the same “Enter” key in Polling method. When KSO7 is
driven, the pressed key will close a path between KSO7 and KSI3. Since all the other KSO pins are idle,
we know that the key has coordinates (KSI3, KSO7).

TIDU521-0October 2014 Keyboard Controller using MSP430 7

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

System Design Theory

13 TEXAS
INSTRUMENTS

www.ti.com

3.11

Note that KSI pins are in idle state when the rest of KSO pins are driven since all the switches are open
and there is no path between KSO and KSI pins.

KSI3 KSI4

KSIO
o H

\
KSOO{ Esc

[[[
KSOl# F11 H Q H
KSO7

Ks.osﬁ - H i H
Kso'14{ | H s' H

Figure 8. Detection of a Key Using Polling Method

T

-+

"Ghost" Key Detection

One of the caveats when using the polling method is that particular patterns can cause unwanted
connections, known as “ghost” keys. This behavior is caused when three or more keys sharing rows and
columns are pressed at the same time.

The following image shows a “ghost” key condition caused by pressing 3 keys at a time.

KSI0O .. KSI3 KSl4 KSIO ... KSI3 KSl4 KSIO ..

KSOO{ Esc H Tab H F1 }—
o | o H o -

T

KSO8

KSO14

1.1, L and S keys are pressed

Ksoo{ Esc H T%b H |::1 }_
on{ e H 8 H

-5

3. Driving Row14 detects S but

2. Driving KSO8 detects | and L it incorrectly detects A

Figure 9. Ghost Key Detection

The software included in this application report detects potential “ghost” keys and does not report them to

the host.

In addition, the software also detects unimplemented keys which can’t cause “ghost” keys, even when 3
keys are pressed at the same time. This condition is shown in the following image.

8 Keyboard Controller using MSP430

TIDU521-October 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

13 TEXAS

INSTRUMENTS
www.ti.com System Design Theory
KSI0O .. KSI3 KSl4 .. KSI0O .. KSI3 KSl4 .. KSI0O .. KSI3 KSl4 ...
\ \ \ \ | | \ | |
KSOO{ Esc H Tab H F1 }— KSOO{ Esc H Tab H F1 }— KSOO{ Esc H Tab H F1 }—

KSO1 F11 KSO1 F11 KSO1 F11

KSO7 : KSO7 i> KSO7

oad {0 H b we {0 H b w0 H
KSO:l4 { ‘ H S‘ H A‘ }— KSO:l4 { ‘ H SI H AI }— KSC:)14 { ‘ H SI H AI }—

3. Driving KSO7 detects Enter and a

key in KSI4, but since KSl4 is not
implemented, it only reports Enter.

1. Q, F4 and Enter keys are pressed 2. Driving KSO1 detects Q and F4

Figure 10. Ignored "Ghost" Key Condition Due to Unimplemented Key

3.2 USBHID

This application report uses the MSP430 application programming interface (API) stack found in the
MSP430 USB Developers Package (msp430usbdevpack).

The stack is configured to work as a composite HID interface with the following interfaces:
» HIDO: Standard Keyboard

» HID1: DataPipe

e HID2: Consumer Control (Multimedia keys)

» HID3: Wireless Radio Control

Since all interfaces are HID-compliant, no drivers are required.

Basic keyboard implementations only need the Standard keyboard interface to report keys to the host and
control the keyboard LEDs.

The DataPipe interface is optional but it allows the MSP430 to not only perform the job of a digital
keyboard, but also to do other jobs taking advantage of the same USB interface and the rest of the
peripherals. Some examples include: reporting the status of sensors which are read using the ADC,
controlling actuators using timer PWMs, etc.

It should be noted that while the host OS interprets and uses the data from the standard keyboard
interface without additional applications or drivers, in the case of the DataPipe interface, a host application
is required. Texas Instruments provides a Java-based HID Demo which enables communication between
a PC and a MSP430 microcontroller running the HID API stack. The Java HID Demo is available in
executable format and source code in the MSP430 USB Developers Package (msp430usbdevpack).

The Consumer Control and Wireless Radio Control interface were added to show the implementation of
function (Fn) keys. It's important to remark that there’s some standardization for these keys, but in some
cases, the implementation depends on the vendor. The function keys implemented in this software are:

TIDU521-October 2014 Keyboard Controller using MSP430 9

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521
http://www.ti.com/tool/msp430usbdevpack
http://www.ti.com/tool/msp430usbdevpack

13 TEXAS

INSTRUMENTS
System Design Theory www.ti.com
Table 1. Supported Function (Fn) Keys
Key Function Interface
Fn + F8 Mute Consumer Control
Fn + F11 NumLock Consumer Control
Fn + F2 Scroll Lock Consumer Control
Fn + UP Increase Volume Consumer Control
Fn + Down Decrease Volume Consumer Control
Fn + Left Increase Brightness Consumer Control
Fn + Right Decrease Brightness Consumer Control
Fn+F3 Turn ON/OFF Wireless Wireless Radio Control

3.3

The keyboard interface supports Boot protocol, which allows it to work with HID-limited hosts (such as
some BIOS).

The VID and PID can be modified according to the particular application but the default code used for this
example uses the following values:

Table 2. VID/PID Used by the Device

VID 0x2047
PID 0x0401

HID over I12C

This application report uses the HIDI2C Development API for MSP430 (ti_hidi2c_msp430).
The stack is configured to work as a single HID interface with the following report IDs:

e 0x01: Standard Keyboard

e 0x03: Consumer Control (Multimedia keys)

* 0x04: Wireless Radio Control

Since the interface is HID-compliant, no drivers are required.

Basic keyboard implementations only need the Standard keyboard report ID in order to report keys to the
host and control the keyboard LEDs.

The Consumer Control and Wireless Radio Control reports are used to show the implementation of
function (Fn) keys. It's important to remark that there’s some standardization for these keys, but in some
cases, the implementation depends on the vendor. The function keys implemented in this software are
shown in Table 1.

10

Keyboard Controller using MSP430 TIDU521-0October 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521
http://software-dl.ti.com/msp430/msp430_public_sw/mcu/msp430/HIDI2C/latest/index_FDS.html

13 TEXAS
INSTRUMENTS

www.ti.com System Design Theory

3.4 Software
The following figure shows the software layers for the keyboard controller:

Application Application
A ‘ Report_App ‘
t hidize CustomHID
reper eventhandiing | | yshContructs
3 keyboard HID report HID API
g parser —
a 8 & | UsB config
X DKS 5 |HID engine | | m
(Digital keyscan) = (5) Event handlers
DelayTimer 12C engine USB_Common
| MSP430 Driverlib
Other peripherals Timer GPIOs 12C usB
Hardware

Figure 11. Software Architecture

Software is designed in a modular way, re-using existing Tl libraries and adding new modules from low-
level drivers to application level.

These modules include:
* Application
Description
Main application initializing the microcontroller and peripherals, and executing a loop checking and
servicing the rest of the modules.
Files
. \Projects*\Src\main.c
Flow diagram:

TIDU521-0October 2014 Keyboard Controller using MSP430 11

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

System Design Theory

13 TEXAS
INSTRUMENTS

www.ti.com

Keyboard
Application

Initialization

Initialize:
Clocks,
GPIOs,
Timers,
usB/I2C

Comm Active?

Y

Initialize DKS and
KBD_Report
modules

Process RX data

Data
received?

A 4

Attend
KBD_Keyboard task

Attend KBD_Report
module

Pending

ka?

Comm, Timer or
Keyboard activity?

Figure 12. Application Flow Diagram

12 Keyboard Controller using MSP430

Copyright © 2014, Texas Instruments Incorporated

TIDU521—-0October 2014
Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

13 TEXAS

INSTRUMENTS

www.ti.com

System Design Theory

Report_App

Description

This file provides an abstraction layer between application, DKS and the communication interface.
When the DKS detects a new key, it will call the callback function KBD430_ReportSend. This function
can then send the data to the corresponding communication interface (for example, USB or 12C).
Files:

A\Projects*\Src\KBD430_report_App.c

KBD430_Report

Description

Handles the HID Keyboard report, adding and removing keys from the report on press/release events,
then sends the data to the Report_App layer.

Files:

AKBD430\Src\KBD430_report.c \KBD430\Include\KBD430_report.h

HID Keyboard Report format:

Table 3. Standard Keyboard Input Report

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bitl Bit0
ByteO Right GUI Right Alt Right Shift Right Ctrl Left GUI Left Alt Left Shift Left Ctrl
Bytel Reserved
Byte2 Key_array[0]
Byte3 Key_array[1]
Byte4 Key_array[2]
Byte5 Key_array[3]
Byte6 Key_array[4]
Byte7 Key_array[5]
Table 4. Standard Keyboard Output Report
Bit7 Bitt | Bits | B4 | Bit3 Bit2 Bit1 Bit0
Byte0 Ignored ScrollLock CAPSLock NumLock
Table 5. Consumer Control Input Report
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bitl BitO
ByteO Bright- Bright+ Play/Pause PrevTrack NextTrack Mute Vol- Vol+
Table 6. Wireless Radio Control Input Report
Bit7 Bit6 Bit5 Bit4 | B3 | B2 Bit1 Bit0
Wireless
Byte0 Unused Toggle

TIDU521-October 2014

Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430 13

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

System Design Theory

13 TEXAS
INSTRUMENTS

www.ti.com

KBD430_Keyboard
Description

This layer gets the keys from the DKS module and reports them to the KBD430_Report module. It can

handle special key combinat
Files:

ions such as Function (Fn) keys.

AKBD430\Src\KBD430_Keyboard.c
AKBD430\Include\KBD430_Keyboard_public.h

Flow diagram:

Keyboard Task

KeyScan

\ 4

Complete?

Key pressed?
\ 4

Flush Report

FnKey
pressed?

Check for Function
key combinations

A\ 4

Ghost keys?

A\ 4

N Invalidate report

\ 4

Update report

Y

\/ Exit

Figure 13. Flow Diagram for Keyboard Task

14 Keyboard Controller using MSP430

Copyright © 2014, Texas Instruments Incorporated

TIDU521—-0October 2014
Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

13 TEXAS
INSTRUMENTS

www.ti.com

System Design Theory

» KBD430_DKS (Digital Keyscan)

Description

This layer handles the digital keyboard scanning, detecting key press/release events, and reporting

them to higher layers.
Files:

\KBD430\Src\KBD430_DKS.c
A\KBD430\Include\KBD430_DKS.h

State Diagram:

$0 \&G\)

» KBD430_DelayTimer
Description

Key press
Interrupt

Column
mode

Polling

\Wait delay

—

/PI’OCESS

\ Keys

Key detected

Scan

/ Wait\

‘J Second

Figure 14. State Diagram for Keyboard Scan

This module handles a general purpose interrupt timer used to implement a delay.
This timer is implemented using TAO.0.

Files:

\KBD430\Src\KBD430_delaytimer.c
AKBD430\Include\KBD430_delaytimer.h

TIDU521—-0October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430 15

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

System Design Theory

13 TEXAS
INSTRUMENTS

www.ti.com

CustomHID

Description

This layer handles the HID Custom interface, which is used to transfer data to/from an USB host. The
current implementation shows a template that can be used for custom development. This module uses
the HID-Datapipe as defined in the USB API included in MSP430 USB Developers Package
(msp430usbdevpack).

Files:

\Projects\USBKBD\Src\CustomHID.c

\Projects\USBKBD\Src\CustomHID.h

Custom HID Report format:

Table 7. CustomHID Report Descriptor

Field Size ‘ Description
IN Report
Report ID 1 Byte Report ID (automatically assigned to 0x3F by the HID-datapipe calls)
Size 1 Byte Number of valid bytes in the data field
Data 62 Bytes Data payload
OUT Report
Report ID 1 Byte Report ID (automatically assigned to 0x3F by the HID-datapipe calls)
Size 1 Byte Number of valid bytes in the data field
Data 62 Bytes Data payload

In addition, the following TI libraries used by this design are:

MSP430 DriverLib: Driver Library's abstracted APl keeps you above the bits and bytes of the MSP430
hardware by providing easy-to-use function calls. Thorough documentation is delivered through a
helpful API Guide, which includes details on each function call and the recognized parameters.
Developers can use Driver Library functions to write complete projects with minimal overhead.

DriverLib is used in this project to initialize MSP430F5529 peripherals and perform basic functions.
Files:

Adriverlib\MSP430F5xx_6xx*.*
Adriverlib\MSP430F5xx_6xx\inc*.h

MSP430 USB Developers Package: The USB Developers Package for MSP430 is a software package
containing all necessary source code and sample applications required for developing a USB-based
MSP430 project. The package only supports MSP430 USB devices.

The USB API is used in the USBKBD configuration to enable USB and utilize the HID class.

Files:

AUSB_API*.*

\Projects\USBKBD\Src\USB_ config*.*

\Projects\USBKBD\Src\USB_App*.*

HIDI2C API for MSP430: Development API driver for Microsoft HIDI2C Protocol for the Texas
Instruments MSP430.

The HIDI2C API is used in the 12CKBD and 12CKBD_G2xx4 configurations to enable HID over 12C.
Files:

Ahidi2c* . *

\Projects\I2CKBD\Src\HIDI2C*.*

\Projects\I2CKBD_ G2xx4\Src\HIDI2C*.*

16

Keyboard Controller using MSP430

TIDU521-October 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521
http://www.ti.com/tool/msp430usbdevpack
http://www.ti.com/tool/msp430driverlib
http://www.ti.com/tool/msp430usbdevpack
http://software-dl.ti.com/msp430/msp430_public_sw/mcu/msp430/HIDI2C/latest/index_FDS.html

13 TEXAS
INSTRUMENTS

www.ti.com System Design Theory

3.5 Hardware

The hardware included in this reference design provides users with the flexibility to test and develop their
keyboard controller application using two different microcontrollers: MSP430F5529 and MSP430G2744.

NOTE: The hardware included in this Reference Design has support for the MSP430F5529 or
MSP430G2744, but it doesn’t support both devices at the same time. Populating both
devices could cause electrical problems. Check the corresponding BOMs in Section 8.1.

The evaluation board contains the following connectors common to both board configurations:

Table 8. Connectors in Evaluation Board

Connector F5529 ‘ G2744
Ji Standard 2x7 JTAG/SBW (only SBW is supported)
J2 Provide external VCC and GND
13 24-pin Keyboard connector. Check Section 4.1 for information about the keyboard

used by this reference design

Boosterpack-compatible connector.

J4-35 - -
Check Figure 15 Check Figure 16
36 Used to power boa_rd and/or Used to power board
communication with host

The board also includes jumpers to provide more flexibility to the developer (options in bold shows the
default configuration):

Table 9. Jumpers in Evaluation Board

Jumper F5529 G2744

1-2 VUSB: Use VUSB (MSP30F5529 internal LDO) for VCC. 1-2 VUSB: Unused

JP1 2-3 LDO: Uses TPS73533 for VCC 2-3 LDO: Uses TPS73533 for VCC
OFF: EXT power using J2 OFF: EXT power using J2

P2 ON: Provides power to MSP430
OFF: Allows for power consumption measurement

IP3 ON: Enables LED3
OFF: LED3 pin can be used in boosterpack connector

P4 ON: Enables LED2
OFF: LED2 pin can be used in boosterpack connector

IP5 ON: Enables LED1
OFF: LED1 pin can be used in boosterpack connector
ON: Connects VUSB to JP1

JP6 OFF: Disconnects VUSB from JP1 Unused

TIDU521-0October 2014 Keyboard Controller using MSP430 17

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

13 TEXAS

INSTRUMENTS
System Design Theory www.ti.com
351 Using MPS430F5529
Using KBD430_BOM_F5529 from Table 19, which utilizes the MSP430F5529 microcontroller, provides a
lot of flexibility to developers thanks to the microcontroller’s rich set of peripherals, large memory size, and
amount of available 1/0s. The software included in this reference design supports the following interfaces:
Table 10. Communication Interfaces Supported for
MSP430F5529
Target Configuration Communication Interface
USBKBD USB
I2CKBD 12C

In addition, the evaluation board provides access to:

» Additional communication peripherals (for example, UART and SPI): allowing developers to send the
keyboard information to the host using other methods, or simply to implement other communication
interfaces

e Analog peripherals (ADC and analog comparator): providing flexibility to implement functions such as,
reading sensors and transducers, using the same keyboard controller

» Timer input/output pins: allowing implementation of PWMs, pulse detection, custom communication
interfaces, etc

* Ample memory resources: allowing for more complex applications, or the implementation of protocols
such as Bluetooth

e Up to 35 GPIOs available

18 Keyboard Controller using MSP430 TIDU521-October 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

13 TEXAS

INSTRUMENTS

www.ti.com

System Design Theory

The application reserves the following peripherals and pins for keyboard functionality:

Table 11. Peripherals and Pinout Used for MSP430FF529

Function Description USBKBD 12CKBD
DelayTimer Low power timer delay TAO0.0 TAO0.0
PU.0/DP
UsB Communication with host PU.1/DM N/A
PUR
12C Communication with host N/A Ssgﬁﬁiggggggf‘
12C_INT Interrupt output to host N/A P1.0
KSOO0 P4.7
KSO1 P5.4
KSO2 P5.5
KSO03 P5.6
KSO4 P5.7
KSO5 P6.6
KSO06 P6.7
KSO7 Keyboard output (row) P7.0
KS08 pP7.1
KS09 p7.2
KSO10 P7.3
KSO11 pP7.7
KS012 P8.0
KS013 pP8.1
KS014 p8.2
KSI0 P2.0
KSI1 pP2.1
KSI2 p2.2
KSI3 pP2.3
Keyboard input (column)
KSl4 pP2.4
KSI5 pP2.5
KSI6 P2.6
KSI7 pP2.7
LED1 NumLock LED P1.1
LED2 CapsLock LED P1.6
LED3 ScrollLock LED P1.7

TIDU521-October 2014

Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430 19

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

System Design Theory

13 TEXAS

INSTRUMENTS

www.ti.com

Additional pins are available in J4-J5 connectors which are Boosterpack-compatible:

Used by keyboardcontroller

BoosterPack standard KBD430-F5529 Pin map

+3.3V
Anal

T ©
(=MCU)

GPIO

Analog In (a1 HOZT
UCAOSTE ' P3.2 1
GPIO TA0.0J(0)
2c SCL UCB1SOMI P4.2
SDA UCBI1SIMO P6.4

+3.3V
CBO g@:Gll; P6.0
UCA0SOMI P3.4
UCAOSIMO P3.3

ACLK [TAOCLK
CBI N

+8V

+5V
GND
CB2 gW:Vlll; P6.2
CB3 J@-EID} P6.3
CB4 Y-V} P6.4
CB5 Y@l (P65
VEREF+] VREF+ ;G P5.0
VEREF- [VREF+W.Clllg P5.1
PM [UCBISTE ; UCAICLK j P4.0
PM ; UCBICLK ; UCAISTE j P4.3

og In
log In
og In
og In
Analog In
og In
Reserved

Reserved

KBD430-F5529 Pin map

Used by keyboardcontroller
BoosterPack standard

GND
(OHTAO.3 PWM out GPIO
SPI CS wiseless GPIO [0)
(cpI0_)
KBD430-F5529 E \RST]

UCBOSIMO HISIE

MOSI

UCBOSOMI HES oA

|SPI MISO

TALO

I .E

TB0.4

OEm
CLO M-S TS ———TED2)}

SPI CS pisplay GPIO
SPI CS otrer GPIO
GPIO

PWM out GPIO

TB0.3

PWM out GPIO

TB0.2

PWM out GPIO

(PL5) TAO.4

PWM out (GPiIO)

(P13) TAO0.2

Timer Capture)} (GPIO)

(P12) TAQ.1

Timer Capture)} (GPIO)

(1) Denotes I/0 pins that are

TDO

GPIO

interrupt-capable.

(4.6 HEZW

GPIO

EZED] UCAIRXD j UCAISOMI] PM

GPIO

*Not used in USB mode

UCAITXD g UCA1SIMO; PM

GPIO

0]

[0)

|

:

%E

(0]
0)

0)
0)
0)

Figure 15. Pinout for Boosterpack Connector using MSP430F5529

3.5.2 Using MSP430G2744
KBD430_BOM_G2744 from Table 20, which utilizes the MSP430G2744 microcontroller, shows a smaller,
lower-cost implementation using a value-line device, but it still provides enough flexibility to implement
custom functionality in the application.
The software included in this reference design supports the following interfaces:
Table 12. Communication Interfaces Supported for MSP430G2744
Target Configuration Communication Interface
I2CKBD_G2xx4 12C
In addition, the evaluation board allows developers to:
* Implement a different communication interface (for example, UART or SPI) to send the keyboard
information to the host using other methods, or simply to implement other communication interfaces
» The functionality of LEDs can be disabled allowing developers access to ADC pins to implement
functions such as, reading sensors and transducers, using the same keyboard controller; or to Timer
input/output pins allowing implementation of PWMs, pulse detection, custom communication interfaces,
etc
» 3 GPIOs available by default, and up to 9 available if not using 12C and LEDs.
The application reserves the following peripherals and pins for keyboard functionality:
Table 13. Peripherals and Pinout Used for MSP430G2744
Pin/Peripheral Description USBKBD
DelayTimer Low power timer delay TAO0.0
12C Communication with host Ssléﬁiggﬂgggggf
I2C_INT Interrupt output to host P2.0
20 Keyboard Controller using MSP430 TIDU521-October 2014

Copyright © 2014, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

13 TEXAS
INSTRUMENTS

www.ti.com System Design Theory

Table 13. Peripherals and Pinout Used for MSP430G2744 (continued)

Pin/Peripheral Description USBKBD
KSOO0 P2.4
KSO1 P2.5
KSO2 P2.6
KSO3 pP2.7
KSO4 P3.0
KSO5 P3.6
KSO6 P3.7
KSO7 Keyboard output (row) P4.0
KSO8 P41
KSO09 P4.2
KSO10 P4.3
KSO11 P4.4
KSO12 P4.5
KSO13 P4.6
KSO14 P4.7

KSIO P1.0
KSI1 P1.1
KSI2 P1.2
KSI3 . P1.3
Keyboard input (column)
KSl4 P1.4
KSI5 P1.5
KSI6 P1.6
KSI7 P1.7
LED1 NumLock LED P2.1
LED2 CapsLock LED pP2.2
LED3 ScrollLock LED P2.3

Additional pins are available in J4-J5 connectors which are Boosterpack-compatible. Note that many pins
are not available because they are reserved for keyboard functions and due to the smaller package of this

device.
Used by keyboardcontroller Used by keyboardcontroller
BoosterPack standard KBD430-G2744 Pin map KBD430-G2744 Pin map BoosterPack standard
+3.3V ® GND GND
NIR PWM out (ceio {TO
UCAOSOMI P3.5 SPICS wissless H{GPIO_ H_ (D)
UCAOSIMO P3.4 (cpI0__)-
erd O O)H{F2.0)
N/A | SPI MOSsI
UCAOSTE P3.3 MISO
SMCLK I TAINCIK ¥ A1 [{0) SPI CS pisplay GPIO__ H{ (O)
[0V 19 UCBOSCL HEER2 [[0]
UCBOSIMO P3.1 ® (0)] TA0 A2 {LED2 } GPIO [0]
+5V (PWMou GPIO__ (O)
GND PWM ouf
= (PWM oul (crio_ { O
N/A PWM out
— Timer Capture} (GPIO}{_(D
T Timer Capture} (GPIO__)}{_ ()
N/A ; GPIO
(!) Denotes I/O pins that are
N/A interrupt-capable. GPIO [0]
N/A GPIO
N/A N/A GPIO [0)
Figure 16. Pinout for Boosterpack Connector using MSP430G2744
TIDU521-0October 2014 Keyboard Controller using MSP430 21

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

13 TEXAS
INSTRUMENTS

Getting Started Hardware www.ti.com

4 Getting Started Hardware

4.1 Keyboard

This reference design uses the keyboard Acer V11102AS1, which is a replacement for some laptops,
including the Acer Aspire One AO532H.

Figure 17. Keyboard used by Reference Design

The software and hardware can be customized for other keyboards as explained in Section 6.3.

22 Keyboard Controller using MSP430 TIDU521-October 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

13 TEXAS
INSTRUMENTS

www.ti.com Getting Started Hardware

4.2 Basic Connections
1. Connect Keyboard to J3

Figure 18. Keyboard Connection

2. Set default jumpers according to Table 9.

3. Optionally, connect I2C host when using I2CKBD or I2CKBD_G2xx4 configurations. Note that there’s
no standard connector for HID over I2C but the pins are available in boosterpack connector J4-35 as
shown in the following table:

Table 14. 12C Connections

Functions Connector.pin
I12C SDA J4.20
I12C SCL J4.18
I12C INT J4.10
VCC J4.2
GND J4.3

4. Connect USB from PC to J6. This will provide power to the board and it also allows for communication
with the host when using USBKBD configuration.

5. The device will start running when pre-programmed. Follow steps in Section 4.3 and Section 4.4 to test
the USB or 12C applications.

6. Program board if necessary. If the MSP430 hasn’t been programmed or when debugging/customizing

code:

e Connect JTAG tool (for example, MSP-FET) to J1

< Follow steps described in Section 5 to build the software and download code.
¢ Run code, or repeat steps 4-5

TIDU521—-0October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430 23

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

Getting Started Hardware

13 TEXAS
INSTRUMENTS

www.ti.com

4.3 Testing USBKBD Configuration
1. Follow steps described in Section 4.2 to execute the application
2. The 3 LEDs on the board will light up in sequence to indicate that the keyboard is running
e Some LEDs can stay ON depending on the current status of CapsLock, NumLock, and ScrollLock.

3. When connected to a PC, the USB keyboard should be detected by the operating system and
enumerated without drivers. Windows shows 5 new devices in the Device Manager (see Figure 19):

* Human Interface Device

— USB Input Device: Standard keyboard in HIDO (MI_00)

— USB Input Device: D

— USB Input Device: Consumer Control in HID2 (MI_02)

S

atapipe in HID1 (MI_01)

— USB Input Device: Wireless Radio Control in HID3 (MI_03)

e Keyboards

— HID Keyboard Device: Standard keyboard in HIDO (MI_00)

USB Input Device Properti L B
USE Input Device Properties m = PN
e G I | Dri Details
| General | Driver | Details | [o | oo ‘
. B USBInput Devics
u'- USB Input Device #F v"é
¥ &l Device Manager m
Froperty
Proj
oy File Action View Help ‘Hardware Ids W
[Hardware Ics e 7] = = =
\ @Eﬁl'ﬂ:lmlﬁl‘ﬁlj‘&‘b Value
Value - - -
T TR e - 4 M%) Human Interface Devices USBWVID_20478PID_D40MEREV_02004MI_01
UéE ‘JIbT.Zﬁd’Z;FI[TD;S.D.WévMI D_D = ﬁ;—é HID-compliant consumer control device USBWID_20474PID_0401&MI_01
S - 85 HID-compliant consumer control device
N U3 HID-compliant device USB Input Device Properties = =
N % HID-compliant device
&5 HID-compliant device | Gengral:| Be Details
HID Keyboard Device Properties o = \ gg HID-compliant device e I = ‘ |
- 9
- — ™ USE Input Device B Us8 input Deviee
o Detai A " %
‘ illea| Dt 35 US8 Input Device G
o HID Keyboard Device 1 ?';é VSR Input Dedick Property
i % USB Input Device [fatnanid
ﬁﬁs USB Input Device BN
Property -5 USE Input Device WValue
it il e -] -5 USB Input Device USB\WID_20478PID_D401&REV_02008M1_02
Value \ (SR DEATVANTAR eatrrolless USBAVID_20474PID_04T14M|_02
- 1T Imaging devices - B -
HEENG A P bl DI RREN TR 00 Bt 4.2 Keyboards
HID\VID_2047&P10_D401&6MI_00 M - B -
< . ! -z HID Keyboard Device = =
e il sl \ = thoard e USB Input Device Properties
HID_DEVICE_UP-0001_U-0006 .25 Standard PS/2 Keyboard N | General | Diver | Details |
HID_DEVICE P i \\“
.
& USE Input Device
"
Fropety
{Hardware Ids bt
Value
USBRVID_20474FID_0ATT4REV_02008M1_03
e USBNVID_20474PI1D_04018M1_03
0K Cancel
Cos]

Figure 19. USB Keyboard in Windows Device Manager

4. The keyboard can now be tested and used as a standard keyboard

NOTE: The example implements Function keys shown in Table 1 but it's important to remark that
the implementation of some of these keys varies depending on the Host.

5. In addition to the keyboard functionality, the custom interface can be tested using the MSP430 HID

24 Keyboard Controller using MSP430

TIDU521—-0October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

13 TEXAS
INSTRUMENTS

www.ti.com

Getting Started Hardware

Demo, available in MSP430 USB Developers Package (msp430ushdevpack).

(a) Open the Java HID Demo.

(b) Select the VID and PD (default: VID = 0x2047, PID = 0x0401).

(c) Click “Set VID PID” button

(d) Click the USB button to connect

(e) The LED should turn green

(f) Write one of the supported commands in the Send and Receive field

1 - Toggles LED1
2 —Toggles LED2
3 — Toggles LED3

(g) Observe the response from USB controller

Vendor and Product ID {in Hex)

ViD @ PID

Serial Number

Interface

Send and Receive

Connected

el

K (f)

| Send

1 Characters

Connected to device VID: 8263 PID: 1025
*—=1
RX—=MNUM LED is OFF

A—=2
RA—=CAPS LED is ON @

*—=3
RA—=5CROLL LED is ON

F—=K
RX—=Invalid command

Clear

Exit

=

Figure 20. Testing the HID Custom Interface using MSP430 HID Demo

TIDU521—-0October 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Keyboard Controller using MSP430

25

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521
http://www.ti.com/tool/msp430usbdevpack

Getting Started Hardware

13 TEXAS
INSTRUMENTS

www.ti.com

4.4

Testing 12CKBD and I2CKBD_G2xx4 Configurations
Follow steps described in Section 4.2 to execute the application
The 3 LEDs on the board will light up in sequence to indicate that the keyboard is running

Some LEDs can stay ON depending on the current status of CapsLock, NumLock, and ScrollLock.
Turn on the 12C Host device, the device will perform enumeration of I12C slave devices during start-up.

The keyboard should be detected by the operating system and enumerated without drivers. Windows
shows the new HID devices including the keyboard in the device manager:

1.
2.

1%

File Action View Help

Device Manager

-] |

= mE HE & P&

4 5 DevPC

b & Audio inputs and outputs

b 3P Batteries

» €} Bluetooth

& 18 Computer

b ¢ Disk drives

© & Display adapters

» 3 Firmware

4 U5 Human Interface Devices
{7 GPIO Buttons Driver
{0 HID-compliant consumer control device
{ HID-compliant consumer control device
{5 HID-compliant device
{5 HID-compliant device
{5 HID-compliant device
{5 HID-compliant device
{5 12C HID Device
{5 12C HID Device

b %5 Imaging devices

4 = Keyboards
= HID Keyboard Device
= HID Keyboard Device

Bl Monitors

& ¥ Network adapters

4 [[5) Other devices

General | Driver | Details Everts

g HID Keyboard Device

HID\WVEN_MSP43DEV_308Col01

HID\MSP4304ColD1
HID\"MSP4304CoI01
HID_DEVICE_SYSTEM_KEYBOARD
HID_DEVICE_UP.0007_U.0006
HID_DEVICE

0=

Test Mode
Windows RT
For testing purposes only. Build 9200

e ST EER

Figure 21. I12C Keyboard in Windows Device Manager

26

Keyboard Controller using MSP430

TIDU521—-0October 2014

Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

13 TEXAS
INSTRUMENTS

www.ti.com

Getting Started Firmware

5. The keyboard can now be tested and used as a standard keyboard

5 Ge

NOTE: The example implements Function keys shown in Table 1 but it's important to remark that
the implementation of some of these keys varies depending on the Host.

tting Started Firmware
The firmware included in this reference design has the following structure:
KBD430_SW
| ----driverlib ~MSP430 DriverLib
| | ----MSP430F5xx_6xx
| | ----deprecated
| |----inc
|----hidi2c ~HIDI2C API for MSP430
| | ----hid
| |----i2c
|
| ----USB_API ~MSP430 USB Developers Package
| | ----USB_CDC_API
| | ----USB_Common
I |----USB_HID_API
| | ----USB_MSC_API
| | ----USB_PHDC_API
|
| ----KBD430 — Keyboard controller driver
| |----Include ~ Header files
| |----Src — Source code
|
|----Projects
| | ----USBKBD ~ Project supporting USB with MSP430F5529
| |----CCs ~ CCS project folder
| |----1AR ~ 1AR project folder
| |----Src ~ Source code for this project
| | ----12CKBD ~ Project supporting 12C with MSP430F5529
| |----CCs ~ CCS project folder
| |----1AR ~ 1AR project folder
| |----Src — Source code for this project
| | ----12CKBD_G2xx4 ~ Project supporting 12C with MSP430G2744
| |----CCS ~ CCS project folder
| |----1AR ~ IAR project folder
| |----Src ~ Source code for this project

The projects included in the software package have been built and tested in the following IDEs:
Code Composer Studio 6.0.1

IAR for MSP430 6.10.2

The procedure to build code for these IDEs is explained in the following sections.

TIDU521—-0October 2014
Submit Documentation Feedback

Keyboard Controller using MSP430

Copyright © 2014, Texas Instruments Incorporated

27

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

13 TEXAS
INSTRUMENTS

Getting Started Firmware www.ti.com

5.1 Building Projects in IAR
1. Select a project to build:
» USBKBD: USB using MSP430F5529
e |2CKBD: I2C using MSP430F5529
e I12CKBD_G2xx4: 12C using MSP430G2744

2. Open the IAR workspace for the corresponding project:
KBD430_SW\Projects\<project>\1AR\<project>.eww

uls]:]
(]

.“u)

3. Build project (F7, Menu — Project — Rebuild All, or

AV P e P EBIEURS| LD

B (FUSB_KBD - Debug

8 (I driverlib

= (O KBO430

@ O include

Lase

[KBD430_delaytimer.c
[KBD430_DKS.c

[KBD430_Keyhoard.c
[c) KBD430_reportc

[KBD430_ScanCadestap.c
=005

a1 CIKBD430

| [KBD430_configh

| [KBD430_hardware h

| [KBD430_report_App.c
CIUSE App

B CustarmHID ¢

— [CustomHID.h

£ main.c

HELCIUsSE

1 [Output

USE_KED

Log

Figure 22. USBKBD Project in IAR

4. Connect board as described in Section 4.2

5. Download project to device (Ctrl+D, Menu — Project — Download and Debug, or ﬁ
[s
6. Execute the program (=) or close debugger and reset device.
28 Keyboard Controller using MSP430 TIDU521-October 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

13 TEXAS
INSTRUMENTS

www.ti.com Getting Started Firmware

5.2 Building Projects in CCS
1. Select a project to build:
e USBKBD: USB using MSP430F5529
e |2CKBD: I2C using MSP430F5529
e I12CKBD_G2xx4: 12C using MSP430G2744
2. Import the corresponding project in CCS (Menu — Project — Import CCS Project).
KBD430_SW\Projects\<project>\CSS

F It
e I s
Select CCS Projects to Import o
Select a directory to search for existing CC5 Eclipse projects.
-
@) Select search-directory: msp430\KBD430_SW\Projects\USBKBDVCCS Browse...
() Select archive file: Browse...

Discovered projects:

T USB_KBD [C:\Users\a0272600\Documents\Work'\Projects\AppNote\Digital KBDush_kbd_msg Select All

Deselect All

‘| | Refresh

["] Automatically import referenced projects found in same search-directory
[Copy projects into workspace

Open the Resource Explorer and browse available example projects...

@

Figure 23. Importing USBKBD project in CCS

3. Build project (Ctrl+B, Menu — Project — Build All, or %)

TIDU521-October 2014 Keyboard Controller using MSP430 29

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

13 TEXAS
INSTRUMENTS

Getting Started Firmware www.ti.com

¥+ CCS Edit - Code Composer sm_@ﬂg
File Edit View Mavigate Project Scripts Run Window Help
LR Reigeviferifdite Gy Quick Access | & | [CCoEdt| %5 €CS Debug
[Project Explorer 52 2% Y= 0O = 0
5 Proy p =
415 USB_KBD [Active - Debug] [ush_kbd_msp430 TI_Desi
[y ﬁ' Binaries
> [l Includes
[z Debug
I [driverlib
4 (73 KBD430
4 25 Include

I Lk KBD430_delaytimerh
iyt
1 [#) KBD430_DKS.h
i+ LB KBD430_HUTh
& B KBD430_Keyboard_public.h
&+ [B KBD430_public_defs.h
1> [k} KBD430_report.h
p
4 [Src
[E'a KBD430_delaytimer.c
I+ [KBD430_DKS.c
I Ly KBD430_Keyboard.c
eyl
[+) KBD430_report.c
pi
1+ [KBD430_ScanCodesMap.c

4 7R Src
(£ KBD430
gy USB_App
I Zx USB_config
b [CustomHID.c
> [CustomHID.h I Console i3 = B [I Problems | Advice i 4" Search = 7
b L) main.c i :
> &EgaConfigs 4 9B B eE[E)E| B gy dtems]
. 5 USB_API CDT Build Conscle [USB_KED] Description Recouce:
P - ~ I NOL 30 31 Lf UGS JG_1 EPUT Ca U0) - e — .
3 Lég Ink_mspd30f5529.cmd “..f’:.lnkimsp430f5529,cmd“ . ./mspa3eUsB.emd” -1"libc.a™ * b 1 Optimization Advice (3 items)
> | 45 mspd30USB.cmd -1"1ibmath.a"”
! <Linking>

'Finished building target: USB_kbd.out"

=* Build Finished *=

4 [2 q m 3

@
=5 USB_KBD BB ‘ Full License |

Figure 24. USBKBD Project in CCS

4. Connect board as described in Section 4.2
5. Download project to device (F11, Menu — Run — Debug, or i&)

6. Execute the program (E Lg) or close debugger and reset device.

30 Keyboard Controller using MSP430 TIDU521-October 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

I

TEXAS

INSTRUMENTS

www.ti.com Customizing the Keyboard Controller

6

6.1

6.1.1

6.1.2

6.1.3

6.1.4

Customizing the Keyboard Controller

The software and hardware provided in this reference design provide an easy-to-use out-of-box
experience for demos and testing, but it also provides a starting point for developers trying to implement
their own keyboard controller in different applications.

The following sections describe some common customizations, but many more can be implemented by
developers.

USB Interface Customizations

USB VID/PID
Developers can modify the VID/PID of the application in order to use their own

Instructions:

1. Modify Macros USB_VID and USB_PID in:
\Projects\Projects\USBKBD\Src\USB_config\descriptors.h

Crystal XT2
Use a different crystal for the design.

Instructions:
1. Modify USB_XT_FREQ_VALUE in:
\Projects\Projects\USBKBD\Src\USB_config\descriptors.h

USB Descriptors

USB interfaces can be modified to meet particular needs. This includes removing unwanted interfaces, or

adding other interfaces such as CDC or MSC.

Instructions:

1. Modify the USB descriptors in the following files:
_\Projects\Projects\USBKBD\Src\USB_config\descriptors.c/h

2. The MSP430 USB Developers Package (msp430usbdevpack) includes a USB Descriptor tool which
can help creating descriptors for the USB API

3. Add/remove application code as necessary to support descriptors. Definitions
USE_CONSUMER_REPORT, USE_WRC_REPORT, and USE_CUSTOM_HID can be used to disable
application calls to these interfaces. These definitions are in:

_\Projects\Projects\USBKBD\Src\KBD430\KBD430_config.-h

Polling Interval

The USB interface defines the interface polling rate in the interface descriptors. This polling rate can be
modified with a direct impact on the response time of the keyboard.

Instructions:

1. Modify the binterval parameter (in ms) in the corresponding interface descriptor found in:
\Projects\Projects\USBKBD\Src\USB_config\descriptors.c/h

TIDU521-0October 2014 Keyboard Controller using MSP430 31
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521
http://www.ti.com/tool/msp430usbdevpack

Customizing the Keyboard Controller

13 TEXAS
INSTRUMENTS

www.ti.com

6.2 HID-12C Interface Customizations

6.2.1 12C Slave Address

Developers can modify the 12C slave address of the device.

Instructions:

1. Modify Macro USCIBx_ADDR in:
_\Projects\Projects\<12CKBDproject>\Src\HIDI2C\hidi2c_settings.h

6.2.2 12C Peripheral/Pins

The hidi2c driver can be modified to use other USCI interfaces and pins.

Instructions:

1. Uncomment/comment USCIBx_XXXX macros in:
_\Projects\Projects\<12CKBDproject>\Src\HIDI2C\hidi2c_settings.h

2. Modify appropriately:

USCIBx
USCIBx_ADDR
USCIBx_GPIO_POUT
USCIBx_GPIO_PDIR
USCIBx_GPIO_PIN
USCIBx_PORT
USCIBx_PINS

« Constant definition

« Slave address used for this interface

« Slave address used for this interface

«— PxDIR register used for [2C_INT

«— PxIN register used for I2C_INT

«— PXSEL register used to initialize 12C pins functionality
« Pins used for 12C (SDA/SCL)

6.2.3 HIDI2C Report Descriptors
The HID interface can be modified to meet particular needs of the developer. Reports can be modified,

removed or added as needed.

Instructions:

1. Modify the HID descriptors in the following file:
\Projects\Projects\<12CKBDproject>\Src\HIDI2C\keyboard_descriptors.h

2. Add/remove application code as necessary to support descriptors. Definitions
USE_CONSUMER_REPORT and USE_WRC_REPORT can be used to disable application use of
these reports. These definitions are in:

\Projects\Projects\<12CKBDproject>\Src\KBD430\KBD430_config.h

32 Keyboard Controller using MSP430

TIDU521-October 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=TIDU521

I

TEXAS
INSTRUMENTS

www.ti.com Customizing the Keyboard Controller

6.3 Keyboard

6.3.1

6.3.2

Matrix Layout

The software can be easily adjusted to support different keyboard layouts.

Instructions:

1.
2.

Obtain the key matrix for your keyboard, similar to Figure 5.

Modify the USBKBD_scancodes_s table in the following file:
-\KBD430\Src\KBD430_ScanCodesMap -c

Each entry of this table corresponds to a key in each (column, row) in the following order:

(0,0), (0,1), (0,2), (0,3), (0,4), (0,5), (0,6), (0,7)
(1,0), (1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (1,7)

(13,0), (13,1), (13,2), (13,3), (13,4), (13,5), (13,6), (13,7)
(14,0), (14,1), (14,2), (14,3), (14,4), (14,5), (14.6), (14,7)

Codes are defined by USB.org HID Usage tables and they are defined in the following file:
-\KBD430\ Include\KBD430_HUT.h

. hidUsageReserved must be used for unavailable keys. During keyboard initialization, the driver will

check for unimplemented keys in order to detect “ghost” keys properly.

Additional entries can be added to this table for matrix arrays different from 15x8. Note that this will
also require changes to the key scan driver which are described in Section 6.3.3.

Function Keys

The software included in this reference design has support for function keys defined in Table 1. The
implementation of function keys can vary, but developers can customize these keys as needed and/or add
new function keys to their implementations.

Instructions:
1. Make sure the Fn key is defined as hidUsageReservedFn in the USBKBD_scancodes_s table (check

Section 6.3.1). The function CheckforFnKey() will detect when the Fn key is pressed and it will set a
flag in order to handle this special case.

If required, modify the report descriptors to add new functions or customize existing ones (check
Section 6.1.3 and Section 6.2.3for USB and 12C respectively). The report descriptors included in the
software example include support for some keys defined in the Consumer Control Usage table and
one key defined in the Wireless Radio Control usage table. More details of HID report descriptors can
be found in HID Usage tables.

Customize the keyboard response for each Function key combination. GetFnKey() includes a switch-
case statement with the implementation of all key combinations. This function is located in the
following file:

-\KBD430\Src\KBD430_Keyboard.c
Note that in some cases, the keyboard combination can simply return a new standard key:

case hidUsageF11:
return hidUsageKeypadNumlock; // Fn + F11 = Num Lock

But in order cases, it will have special functionality as follows:
case hidUsageF8:
return CONSUMER_KEY(0x04); // Fn +